
Symbolic Representation and
Manipulation of Discrete Functions

Diploma Thesis

Jörn Ossowski

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN
Institute of Computer Science I

4th November 2004

Acknowledgements

This work would not have been possible without the support of Professor Dr.
Christel Baier, under whose supervision I got the opportunity to explore a new
field with a chance to do real science.

Special thanks go to Frank, Jasmin, Marcus, Rolf, Sascha, Tobias and Wolf-
gang for providing this work with ideas and criticism.

I want to thank my girl-friend Claudia for her endless patience and under-
standing. Thanks to my brother Martin and all who helped to make this
thesis possible.

Lastly, and most importantly, I would like to express my sincere appreciation
to my parents. To them I dedicate this thesis.

3

0 Contents

Chapter 1 Introduction 1

Chapter 2 Shared Binary Decision Diagrams 3

2.1. Notations and Definitions . 3

2.2. Binary Decision Diagrams . 4

2.3. Ordered Binary Decision Diagrams 6

2.3.1. Reduced Ordered Binary Decision Diagrams 8

2.3.1.1. Binary Boolean Operators 10

2.3.1.2. Test for Equality 13

2.3.1.3. The Boolean Satisfiability Problem 14

2.3.1.4. Cofactors . 14

2.3.1.5. Negation . 14

2.3.1.6. Asymptotic Complexity 14

2.3.1.7. The Variable Ordering Problem 16

2.3.2. Shared Ordered Binary Decision Diagrams 18

2.3.2.1. Test for Equality 20

2.3.2.2. Negation . 20

2.3.2.3. Attributed Edges 20

2.3.3. SOBDD with Negative Edges 21

2.3.3.1. Algorithms on SOBDDs with negative edges . . 24

2.3.3.2. Negation . 24

2.3.3.3. Asymptotic Complexity 26

2.4. Algebraic Computation . 26

I

CONTENTS CONTENTS

2.4.1. Integer Computation . 26

2.4.1.1. Benchmark . 27

2.4.2. Matrix Representation 28

Chapter 3 Algebraic Binary Decision Diagrams 31

3.1. Syntax and Semantics . 31

3.2. Algorithms . 32

3.3. Algebraic Computation . 33

3.3.1. Basic Algebraic Operations 34

3.3.1.1. Benchmark . 34

3.3.2. Matrix Representation 35

3.3.2.1. Benchmark . 36

Chapter 4 Normalized Algebraic Binary Decision Diagrams 39

4.1. Definition and Semantics . 39

4.2. Canonicity . 44

4.3. Algorithms . 55

4.4. Algebraic Computation . 57

4.4.1. Basic Algebraic Computation 57

4.4.1.1. Benchmark . 57

4.4.2. Matrix Representation 59

4.4.2.1. Benchmark . 60

4.5. Implementation . 60

4.5.1. Influence of λε and τε . 61

4.5.2. Storing the node parameters 61

Chapter 5 Experimental Results 63

5.1. Algebraic Computation . 63

5.2. Matrix Representation . 66

Chapter 6 Conclusion and Perspective 69

II

1 Introduction

Symbolic representation and manipulation of discrete functions over Boolean
variables plays an important role in a wide range of applications, e.g. symbolic
model checking, computer-aided design (CAD) and very large scale integration
(VLSI). Many problems can be expressed in terms of operations over finite
domains. These domains can be understood by their binary encoding. This
could be seen as a generalization of the problem to find appropriate data
structures for Boolean functions. If Boolean functions can be represented
and manipulated in an efficient way many complex problems can be solved
symbolically.

There are a lot of different ways to represent Boolean functions. Table 1.1
shows the truth table representation of the function

f(x, y, z) = y ∨ z.

Algorithms to manipulate truth tables have the complexity Ω(2n) for n input
variables. Another representation, which has the same complexity, are binary
decision trees. Figure 1.1 shows a decision tree for the function f(x, y, z) =
y ∨ z. To evaluate the value of the function the tree has to be traversed from
the root to a drain.

Binary Decision Diagrams (BDDs) [Lee 1959, Akers 1978] provide a more effi-
cient method for representing and manipulating Boolean functions than binary

x y z f(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 1.1: Truth Table

1

Chapter 1. Introduction

1

x

1

z

0 10

z

y

1 1

z z

1

y

Figure 1.1: Binary Decision Tree

decision trees and truth tables do. With the use of BDDs various complex
problems can be solved.

Ordered Binary Decision Diagrams (OBDDs) [Bryant 1986] are BDDs with
some restrictions that assure a canonical form to represent Boolean functions.
With this property the equality of functions can be checked without difficulty.

Some problems cannot be represented by their Boolean encoding in an effi-
cient way. That was the reason why Algebraic Decision Diagrams1 (ADDs)
[Bahar 1993] were developed. These are BDDs that can contain multiple drains
and thus can be used for algebraic computation.

But even ADDs cannot represent discrete Boolean functions with a lot of
different values efficiently. Another variant that tries to solve this problem
are Edge-Valued BDDs (EVBDDs) [Lai 1992]. The idea behind this variant
is that the addition of a constant value to a function f does not influence the
structure of an EVBDD that represents f . This concept can be expanded to
a data structure that is invariant under scalar multiplication and translation
which leads to Normalized ADDs (NADDs). NADDs are structural equivalent
to Factored Edge-Valued BDDs (FEVBDDs) [Tafertshofer 1997]. The main
difference relies on how the functions are normalized. A detailed comparison
can be found in the succeeding paper. Like EVBDDs and FEVBDDs NADDs
do not store the values of a function inside the drains, the values will be
calculated on the way to them.

In this thesis the ability of algebraic computation of different OBDD variants
will be discussed and compared. The second and third chapter will give an
introduction to Shared OBDDs (SOBDDs) and ADDs. One of the major
achievements of this diploma thesis was the development of NADDs, which
will be explained in Chapter 4. In Chapter 5 we will examine the differences
and advantages of all introduced OBDD variants. The advantages of NADDs
with respect to algebraic computations will also be shown there.

1similar to Multi-Terminal Binary Decision Diagrams (MTBDDs) [Clarke 1996]

2

2 Shared Binary Decision Diagrams

Binary Decision Diagrams (BDDs) can be used as a data structure for symbolic
representation of discrete functions over Boolean variables. This chapter will
give the definition of Shared Ordered Binary Decision Diagrams (SOBDDs)
and will explain basic manipulations on them.

2.1. Notations and Definitions

Definition 2.1.1. Let Z = {z1, . . . , zn} be a finite set of Boolean variables.
An evaluation of Z is a map

η : Z → {0, 1}

that assigns a value η(z) ∈ {0, 1} to each variable z ∈ Z.
Eval(Z) identifies the set of all evaluations of Z.

Let a = (a1, . . . , an) ∈ {0, 1}
n and z = (zi1 , . . . , zin) ∈ Zn with pairwise

different zij , then [z = a] represents the evaluation η ∈ Eval(Z) with

η(zij) = aj, j = 1, . . . , n.

Notation 2.1.2. Let Z be defined as in Definition 2.1.1,
b = (b1, . . . , br) ∈ {0, 1}

r and z = (zi1 , . . . , zir) ∈ Z
r with pairwise different zij .

The assignment

η
[
z = b

]
∈ Eval(Z)

is defined by

η
[
z = b

]
(z) =

{
bj if z ∈ {zi1 , . . . , zir} with z = zij

η(z) otherwise.

Definition 2.1.3. Let K be a set. A K-function over Z is a map

f : Eval(Z)→ K.

3

2.2. Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

The set of all Boolean functions over Z = {z1, . . . , zn} will be called K(Z) or
K(z1, . . . , zn). The special case K = {0, 1} identifies the switching functions.
The set of all switching functions will be called B(Z) or B(z1, . . . , zn).

Definition 2.1.4. Let z and b be as in Notation 2.1.2 and f ∈ K(Z). The
cofactor of f related to z is defined by:

f |z=b ∈ K(Z)

where

f |z=b(η) = f(η
[
z = b

]
).

Definition 2.1.5. A variable ordering over Z is an ordered tuple

π = (zi1 , . . . , zin),

that contains every variable zi ∈ Z exactly once. A variable ordering π defines
an order relation over variables in a canonical way. For every two variables
zij , zik ∈ π the following holds:

zij <π zik ⇔ j < k.

2.2. Binary Decision Diagrams

Binary decision diagrams are a variant of decision trees. The reason why
decision diagrams are a more compact representation for Boolean functions
than decision trees, is that the functions of certain subtrees can coincide and
therefore be represented by a single node of a BDD.

An example for this is shown in Figure 2.1. Each non-terminal node v is
labeled with its variable name var(v) and has successors directed towards its
two children succ0(v) (shown as a dashed line) and succ1(v) (shown as a solid
line) corresponding to the value assigned to the variable. Each drain d is
labeled with its value value(d).

BDDs are in practice an efficient data structure for Boolean function repre-
sentation, but they are not efficient for every function. It will be shown that
there is no efficient data structure for all Boolean functions.

4

Chapter 2. Shared Binary Decision Diagrams 2.2. Binary Decision Diagrams

1

x

1

z

0 10

z

y

1 1

z z

1

y

1

z

y

0

Figure 2.1: Decision Tree and a corresponding Binary Decision Diagram

Theorem 2.2.1. The number of switching functions over Z equals

|B(Z)| = 22|Z|

.

Proof. Exactly |B||A| maps A → B exist for every two finite sets A, B. Let
B = {0, 1} then the following holds:

|Eval(Z)| = number of maps Z → {0, 1} = 2|Z|

and with this:

|B(Z)| = number of maps Eval(Z)→ {0, 1} = 2|Eval(Z)| = 22|Z|

Theorem 2.2.2. For each universal data structure functions with a represen-
tation of exponential size exist.

Proof. Let C be the number of functions f ∈ B(z1, . . . , zn) that can be repre-
sented with at most 2n−1 bits. Then it holds:

C ≤
2n−1∑

i=0

2i = 22n−1+1 − 1 < 22n−1+1.

This shows that at least

22n

− 22n−1+1 = 22n−1+1 · (22n−2n−1−1 − 1) = 22n−1+1 · (22n−1−1 − 1)

functions need more than 2n−1 bits to be represented.

5

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

1

y

0

z

z

y

x

Figure 2.2: BDD violating the variable ordering condition

0

x

1

y

x

Figure 2.3: BDD violating the Read Once condition

2.3. Ordered Binary Decision Diagrams

The main concept for representing switching functions will be explained by
means of BDDs. For the purpose of this thesis, only Bryant’s Ordered BDDs
(OBDDs) [Bryant 1986] are of relevance. These require a fixed variable order-
ing1 π such that on every path the variables occur in the same order as in the
variable ordering π.

Another important requirement for an OBDD, besides the variable ordering,
is the Read Once condition. No variable may occur more than once on every
possible path of an OBDD2.

Definition 2.3.1. [Ordered Binary Decision Diagram]: Let π be a vari-
able ordering of Z. A π-OBDD is a tuple

B = (V, VI , VT , succ0, succ1, var, value, v0)

that contains:

• a finite set of nodes V = VI ∪VT with VI ∩VT = ∅ (VI contains the inner
and VT the terminal nodes),

1See Figure 2.2 for a BDD violating the variable ordering condition.
2See Figure 2.3 for a BDD that violates the Read Once condition.

6

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

• functions succ0 and succ1

succ0, succ1 : VI → V

that map every inner node to its successors,

• a function var : VI → Z that yields a labeling of the nodes with variables,

• a map value : VT → {0, 1} that assigns a value to a terminal node and

• a root node3: v0 ∈ V .

Additionally, for all v ∈ VI and b ∈ {0, 1} the following must hold:

var(v) <π var(succb(v)) if succb(v) ∈ VI .

Notation 2.3.2. In the following indices for the components of an OBDD are
used when dealing with two or more OBDDs. For instance:

Bi = (Vi, VIi
, VTi

, succ0i
, succ1i

, vari, valuei, v0i
)

The complexity of algorithms on OBDDs is measured with respect to their
size.

Definition 2.3.3. [Size of an OBDD]: The size of a π-OBDD B is defined
by its number of nodes:

|B| = |V |.

The following definition (Shannon Expansion) uses a bottom-up strategy to
define the function represented by a given OBDD.

Definition 2.3.4. [Function of an OBDD]: Let B be an OBDD with a
variable set Z. A function fv ∈ B(Z) will be assigned to every node v with

fv =

{
value(v) v ∈ VT

(¬z ∧ fsucc0(v)) ∨ (z ∧ fsucc1(v)) v ∈ VI with var(v) = z.

3Nodes that are not reachable from a root node do not belong to the OBDD. This holds
for every further BDD variant.

7

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

Example 2.3.5. The following BDD represents the function y ∨ z which can
be calculated with the Shannon Expansion in a bottom-up strategy.

1

z

y

0

�� ��(¬z ∧ 0) ∨ (z ∧ 1) = z

�� ��(¬y ∧ z) ∨ (y ∧ 1) = y ∨ z

�

With this definition it is possible to define algorithms to manipulate OBDDs.
But a very important condition is missing to assure the uniqueness4 of OBDD
representations for a given switching function and a fixed variable ordering.

2.3.1. Reduced Ordered Binary Decision Diagrams

In Figure 2.1 the decision tree has redundant nodes while the corresponding
Binary Decision Diagram has none. Note, that any decision tree could also be
interpreted as an Ordered Binary Decision Diagram.

Definition 2.3.6. An OBDD B is called reduced if for every two nodes v1, v2 ∈
V of B the following holds:�� ��v1 6= v2 ⇒ fv1 6= fv2

This definition ensures that there are no redundant nodes in a ROBDD. In the
following it will be assumed that no OBDD has redundant drains. To obtain
this, different drains with the same value have to be merged into one. With
two reduction rules every such OBDD can be transferred into a ROBDD.

4Figure 2.1 shows two different OBDDs representing the same function.

8

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

10

yy

x

y

10

x

y

10

Figure 2.4: Reduction rules applied from bottom to top level

10

yy

x

10

yy

x

y

10

x

Figure 2.5: Reduction rules applied from top to bottom level

• Elimination rule: If for node v ∈ VI holds:

succ0(v) = succ1(v).

Eliminate v and redirect all incoming edges to succ0(v).

• Isomorphism rule: If for two nodes v1, v2 ∈ V with v1 6= v2

holds:
succb(v1) = succb(v2) ∀b ∈ {0, 1}.

Eliminate v2 and redirect all incoming edges to v1.

These rules should be applied from the bottom to the top level of the OBDD
(see Figure 2.4). Otherwise the OBDD could still contain redundant nodes
(see Figure 2.5). In this case more than one traversation is needed to obtain
reducedness.

This observation is the reason why all algorithms compute their values from

9

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

the bottom to the top level. The reduction rules can be applied before creating
redundant nodes. Thus, the reducedness of an OBDD can be ensured without
additional traversation.

2.3.1.1. Binary Boolean Operators

Now it is feasible to define manipulations on (R)OBDDs. The following ob-
servation is the base of all OBDD-based binary Boolean operators.

Lemma 2.3.7. Let f1, f2 ∈ B(Z), z ∈ Z and op be a binary Boolean connec-
tor (e.g. conjunction, disjunction, implication,. . .). Then the following holds:

f1 op f2 =
(
¬z ∧ (f1|z=0 op f2|z=0)

)
∨
(
z ∧ (f1|z=1 op f2|z=1)

)

Proof. With the definition of cofactors it can directly be seen that for every
b ∈ {0, 1}:

(f1 op f2)|z=b = f1|z=b op f2|z=b.

For a z-node v, fv = f1 op f2 can be expressed with the Shannon Expansion:

fv = f1 op f2

= (¬z ∧ (f1 op f2)|z=0) ∨ (z ∧ (f1 op f2)|z=1)

= (¬z ∧ (f1|z=0 op f2|z=0)) ∨ (z ∧ (f1|z=1 op f2|z=1))

Lemma 2.3.7 can be used to describe an algorithm which applies a binary
Boolean connector to two OBDDs, called APPLY. Algorithm 1 describes a
version of the APPLY algorithm, which usually creates redundant nodes (see
Figure 2.6).

To obtain a ROBDD, it is necessary to reduce the OBDD after applying an
operator to two OBDDs. But with small modifications the algorithm will
create reduced OBDDs (see Algorithm 2).

Note that Algorithm 2 still creates a ROBDD even if the input contains a non-
reduced OBDD. But it is reasonable to apply this algorithm on ROBDDs only
because the computation time depends on the size of the used input BDDs.

Lemma 2.3.8. For two ROBDDs B1,B2, a Boolean operator op has the com-
plexity

Θ(|B1| · |B2|).

The integration of the elimination and isomorphic rule (as in Algorithm 2)
can be used for any kind of algorithm on OBDDs. In the following, this
modification will be used as the find or add function (see Algorithm 3).

10

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

Algorithm 1 APPLY(v1, v2,op)

Input: Node v1 of a π-OBDD B1, node v2 of a π-OBDD B2

and operator op
Output: Node v of a π-OBDD with fv = fv1 op fv2

if v1 ∈ VT1 and v2 ∈ VT2 then
b← value1(v1) op value2(v2)

return b

else
z ← min{var1(v1), var2(v2)}
w0 ← APPLY(v1|z=0, v2|z=0, op)
w1 ← APPLY(v1|z=1, v2|z=1, op)
v ← new z-node v with succ0(v) = w0 and succ1(v) = w1

return v

end if

Algorithm 2 APPLY(v1, v2,op) with modifications

Input: Node v1 of a π-ROBDD B1, node v2 of a π-ROBDD B2

and operator op
Output: Node v of a π-ROBDD with fv = fv1 op fv2

if v1 ∈ VT1 and v2 ∈ VT2 then
if ∃d ∈ VT with value(d) = value1(v1) op value2(v2) then

return d

else
b← new drain with value(b) = value1(v1) op value2(v2)

return b

end if
else

z ← min{var1(v1), var2(v2)}
w0 ← APPLY(v1|z=0, v2|z=0, op)
w1 ← APPLY(v1|z=1, v2|z=1, op)
if w0 = w1 then

return w0

else if ∃v ∈ VI with var(v) = z, succ0(v) = w0 and succ1(v) = w1 then
return v

else
v ← new z-node v with succ0(v) = w0 and succ1(v) = w1

return v

end if
end if

11

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

x

10

∧
x

1 0

ւ'

&

$

%

0 ∧ 1

↓

0

ց

ց'

&

$

%

1 ∧ 0

↓

0

ւ

x

0

Figure 2.6: Conjunction of two ROBDD functions creates redundant nodes

12

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

Algorithm 3 find or add(z, w0, w1)

Input: Variable z ∈ Z and nodes w0 and w1 of a π-OBDD B
Output: Node v of a π-ROBDD

if w0 = w1 then
return w0

else if ∃v ∈ VI with var(v) = z, succ0(v) = w0 and succ1(v) = w1 then
return v

else
v ← new z-node v with succ0(v) = w0 and succ1(v) = w1

return v

end if

2.3.1.2. Test for Equality

A very important operation on functions is the test for equality. This test can
be performed by applying the operator ↔ to the (R)OBDDs of two functions
and verifying whether the result equals 1. Unfortenately, this test has the
complexity Θ(|B1| · |B2|), B1 and B2 being the corresponding OBDDs.

For two π-ROBDDs B1 and B2 with the same variable ordering π = (z1, . . . , zn)
this test can be done according to Algorithm 4 in time

Θ(min{|B1|, |B2|}).

Algorithm 4 EQUAL(v1, v2)

Input: Node v1 of a π-ROBDD B1, node v2 of a π-ROBDD B2

Output: fv1 ↔ fv2 ≡ 1

if v1 ∈ VT1 and v2 ∈ VT2 then
return value1(v1)↔ value2(v2)

else if v1 ∈ VI1 and v2 ∈ VI2 then
if var1(v1) 6= var2(v2) then

return false
end if
z ← var1(v1)
return EQUAL(v1|z=0, v2|z=0) ∧ EQUAL(v1|z=1, v2|z=1)

else
return false

end if

13

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

2.3.1.3. The Boolean Satisfiability Problem

The Boolean Satisfiability problem (SAT) is computationally a hard decision
problem with many important applications in computer science. A proposi-
tional logical formula is said to be satisfiable if there is an assignment for its
free variables that makes the formula true. SAT is NP-complete. This was the
first problem known to be NP-complete proven by Stephen Cook [Cook 1971].
However, for a given ROBDD function this problem can be solved in constant
time5.

f is satisfiable⇔ f 6≡ 0

2.3.1.4. Cofactors

Another important operation on a function is building cofactors. To build the
cofactor f |z=b of a function f the value of the variable z is set to b.

Example 2.3.9. Let f = z0 ⊕ ¬z1

f |z0=0 = ((¬z0 ∧ ¬z1) ∨ (z0 ∧ z1))|z0=0

= (¬0 ∧ ¬z1) ∨ (0 ∧ z1)

= 1 ∧ ¬z1

= ¬z1

�

Algorithm 5 describes how to build a cofactor for a given OBDD B in the
complexity O(|B|).

2.3.1.5. Negation

The negation of an OBDD function can be done in constant time. For this
purpose the values of the drains have to be switched (see Figure 2.7).

2.3.1.6. Asymptotic Complexity

The complexity of operators on ROBDDs can be seen in Table 2.1. The test
for equality is a very important operation on OBDDs. A very simple idea for
improving ROBDDs so that this test can be done in constant time leads to
SOBDDs, which will be described in detail later. The basic idea is to store
more than one function in a reduced graph by sharing nodes for common
cofactors instead of storing different ROBDDs.

5Notice that a ROBDD generated from a propositional logical formula can have expo-
nential size (see Lemma 2.3.8).

14

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

Algorithm 5 COFACTOR(v, z, b)

Input: Node v of a π-ROBDD B, variable z ∈ Z and value b ∈ {0, 1}
Output: Node w with fw = f |z=b

if v ∈ VT then
return v

else if z < var(v) then
return v

else if z = var(v) then
return succb(v)

else
w0 ← COFACTOR(succ0(v), z, b)
w1 ← COFACTOR(succ1(v), z, b)
return find or add(z, w0, w1)

end if

1

z

y

0

y

0

z

1

Figure 2.7: Before and after the application of the negating function

Operator on ROBDDs Asymptotic Complexity

APPLY(B1,B2, op) |B1| · |B2|
EQUAL(B1,B2) min{|B1|, |B2|}

B|z=b |B|
¬B constant

Table 2.1: Complexity of operators on ROBDDs

15

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

x2

y2

y1

0 1

x1

x2

x1

y2

x2

0

y1y1

1

Figure 2.8: The same function represented by ROBDDs with different vari-
able orderings

2.3.1.7. The Variable Ordering Problem

The APPLY algorithm (Algorithm 2) requires as input two OBDDs with the
same variable ordering. It is obvious that manipulating OBDDs with arbitrary
variable orderings is at least as hard as manipulating OBDDs with the same
ordering.

The representation of a function with a ROBDD and given variable ordering π

is optimal under all π-OBDDs but the variable ordering has a great influence
on the size of an OBDD.

Figure 2.8 shows the influence of different variable orderings on the function
f(x1, y1, x2, y2) = (x1 ∧ y1) ∨ (x2 ∧ y2). With the ordering π = (x1, y1, x2, y2)
the ROBDD on the left has six nodes6 while the same function represented
by the ROBDD on the right (with the ordering π′ = (x1, x2, y1, y2)) has eight
nodes.

Functions can be classified by their behaviour in reference to different variable
orderings.

In Table 2.2 three different function classes can be seen. Unfortunately, the
functions whose best OBDD representation has exponential size are not only
of theoretical nature. They appear quite often in arithmetic computations

6drains are counted

16

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

Complexity
Function Class

Best Worst

Symmetric linear quadratic
Integer Addition linear exponential
Integer Multiplication (middle bits) exponential exponential

Table 2.2: Complexity for different function classes

with OBDDs7. More detailed information about the complexity of integer
addition and multiplication can be found in [Bryant 1991]. Theorem 2.2.2
implies that with each universal data structure for switching functions, such
as ROBDDs, there are ill-natured functions8. Fortunately, there are also good-
natured functions where the ROBDD size is invariant under different variable
orderings.

Definition 2.3.10. A function f ∈ B(z1, . . . , zn) is called totally symmetric
if its values are invariant under all permutations σ ∈ Sn of all assignments
a ∈ {0, 1}n, i.e. :

f([z = a]) = f([z = σ(a)]).

Example 2.3.11. The parity function f =
⊕

1≤i≤n

zi is totally symmetric.

f [z = a] =
⊕

1≤i≤n

ai

= a1 ⊕ . . .⊕ an

= aπ(1) ⊕ . . .⊕ aπ(n)

=
⊕

1≤i≤n

aπ(i)

= f [z = π(a)]

�

Lemma 2.3.12. Every ROBDD representation of a totally symmetric function
f ∈ B(z1, . . . , zn) has

O(n2)

nodes.

7How OBDDs can be used for integer arithmetics will be shown in Section 2.4.
8These are functions with exponential sized ROBDDs with respect to any variable or-

dering

17

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

f(3)

z2

f(0) f(4)

z3

z2

z4

z1

z3 z3

z4 z4

f(2)

z4

f(1)

Figure 2.9: Construction of an OBDD representing a symmetric function

Proof. The values of a totally symmetric function are defined by the number of
zeros and ones assigned to its variables. From this point of view a symmetric
function f : {0, 1}n → {0, 1} can also be seen as a function

f : {0, . . . , n} → {0, 1}.

For any ordering π the π-OBDD representation of a symmetric function can
be constructed as indicated in Figure 2.9 for four variables.

From this example it can be seen that level i contains at most i zi-nodes. For
n variables the number of nodes is bounded above by:

(n + 1)︸ ︷︷ ︸
number of drains

+

n∑

i=1

i = (n + 1) +
n · (n + 1)

2

=
(n + 2) · (n + 1)

2

=
n2 + 3n + 2

2

The question if several functions have polynomial-sized ROBDDs for a common
variable ordering cannot be answered efficiently. It is already very hard to find
an optimal variable ordering9 for one OBDD.

2.3.2. Shared Ordered Binary Decision Diagrams

Although the representation of two or more switching functions by separate
(node disjoint) ROBDDs with appropriate variable orderings might be more

9An algorithm for the exact minimization can be found in [Friedman 1990]. The proof
of the complexity for OBDDs and SOBDDs can be read in [Bollig 1996] and [Tani 1993].

18

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

compact than the representation in a single reduced decision graph, the manip-
ulation of ROBDDs with different orderings is known to be computationally
hard. For most Boolean connectives the best known algorithms rely on a
transformation of the given ROBDDs into equivalent ROBDDs with the same
ordering. For this reason the simultaneous representation of several switching
functions in one Shared OBDD (SOBDD) turned out to be the most appro-
priate approach.

Definition 2.3.13. [Shared Ordered Binary Decision Diagram]: Let π

be a variable ordering of Z. A π-SOBDD is a tuple

B = (V, VI , VT , succ0, succ1, var, value, v)

that contains:

• a finite set of nodes V = VI ∪VT with VI ∩VT = ∅ (VI contains the inner
and VT the terminal nodes),

• functions succ0 and succ1

succ0, succ1 : VI → V

that map every inner node to its successors,

• a function var : VI → Z that yields a labeling of the nodes with variables,

• a map value : VT → {0, 1} assigns a value to a terminal node and

• a tuple of root nodes: v = (v1, . . . , vk) ∈ V k.

Additionally, for all v ∈ VI and b ∈ {0, 1} the following, must hold:

var(v) <π var(succb(v)) if succb ∈ VI

In the following SOBDDs are assumed to be reduced, i.e.

fv 6= fw if v 6= w.

In the sequel, we shall discuss the complexity of several composition operators
for ROBDDs represented as nodes of a SOBDD. In this context, we will use
the following definition.

Definition 2.3.14. [Size of a function]: Let f be a switching function. The
size of f with regard to variable ordering π is defined by

|f |π = |B|

B being the π-ROBDD with fv0 = f . If π is understood from the context then
the notation |f | instead of |f |π will be used.

19

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

x

0

y

1

x

0

y

1

Figure 2.10: Switching the drains influences all functions

2.3.2.1. Test for Equality

Two functions are equal if they are represented by the same graph. Thus, the
test for equality can be performed in constant time10 while for ROBDDs an
algorithm needs to traverse the whole diagram (see Algorithm 4).

2.3.2.2. Negation

The negation of a function in a SOBDD cannot be performed as in ROBDDs
because switching the values of the two drains would influence all represented
functions in the SOBDD (see Figure 2.10).

A simple way of negating a function f is based on APPLY:

1⊕ f ≡ (¬1 ∧ f) ∨ (1 ∧ ¬f)

≡ 1 ∧ ¬f

≡ ¬f

An explicit formulation for APPLY(1, f,⊕) is shown in Algorithm 6. APPLY(1, f,⊕)
and hence NEGATE(f), have the complexity O(|f |).

2.3.2.3. Attributed Edges

The complexity of several operators on SOBDDs is shown in Table 2.3. As
mentioned in Section 2.3.1.6 one of the advantages of SOBDDs is that the test
for equality can be performed in constant time but the downside of SOBDDs is
that negation cannot be carried out in constant time. To avoid this drawback
attributed edges can be used.

10with the comparison of the root nodes

20

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

Algorithm 6 NEGATE(v)

Input: z-node v of a π-SOBDD B
Output: ¬fv

if v ∈ VT then
return ¬value(v)

else
w0 ← NEGATE(v|z=0)
w1 ← NEGATE(v|z=1)

return find or add(z, w0, w1)
end if

Operator on SOBDDs Asymptotic Complexity

APPLY(f1, f2, op) |f1| · |f2|
EQUAL(f1, f2) constant

f |z=b |f |
¬f |f |

Table 2.3: Complexity of operators on SOBDDs

Using attributed edges means information is stored on the edges of a node that
influences the semantics of the represented function. In this case, the negation
of a function is the information stored on the edges of a node. This type of
attributed edges is called negative edges below.

A lot of other kinds of attributed edges for SOBDDs are possible11.

2.3.3. SOBDD with Negative Edges

The most important thing to take care about when dealing with attributed
edges is that uniqueness can easily be lost. In the case of SOBDDs this would
cost the advantage of testing for equality in constant time. Therefore two
restrictions will be used:

• only the one drain12 exists

• an attribute can only be attached to the edge from f to f |z=0 and to the
root nodes v0 ∈ v0

11See [Minato et al 1990] for more details.
12fone drain ≡ 1

21

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

x

vu

⇒
x

vu

x

u v

⇒

u v

x

Figure 2.11: Transformation rules for negative edges

When reformulating the APPLY algorithm and other algorithms for SOBDDs
with negative edges one has to take care about these two conditions. Figure
2.11 shows how situations in which the conditions are violated can be resolved.

Definition 2.3.15. [SOBDD with Negative Edges]: Let π be a variable
ordering of Z. A π-SOBDD with negative edges is a tuple

⊸

B = (V, VI , VT , neg, succ0, succ1, var, 〈v, neg〉)

that contains13:

• a finite set of nodes V = VI ∪VT with VI ∩VT = ∅ (VI contains the inner
and VT the one drain),

• functions succ0 and succ1

succ0, succ1 : VI → V

that map every inner node to its successors,

• a map
neg : VI → {0, 1}

13The map value : VT → {0, 1} is not needed anymore because there is only the one
drain.

22

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

• a function var : VI → Z that yields a labeling of the nodes with variables,

• a tuple of root node pairs:

〈v, neg〉 = (〈v1, neg1〉 , . . . , 〈vk, negk〉) ∈ (V × {0, 1})k

Additionally, for all v ∈ VI and b ∈ {0, 1} the following must hold:

var(v) <π var(succb(v)) if succb ∈ VI .

The reducedness as formalized in Definition 2.3.18 is also required.

The semantics of a SOBDD with negative edges is slightly different to the
semantics of SOBDDs.

Definition 2.3.16. [Function of a SOBDD with negative edges]: Let
⊸

B be an π-SOBDD with negative edges and variable set Z. Every node v

will be assigned to a function fv ∈ B(Z) with

fv =

{
1 v ∈ VT(
¬z ∧ (neg(v)⊕ fsucc0(v))

)
∨
(
z ∧ fsucc1(v)

)
v ∈ VI with var(v) = z.

Every root node tuple 〈vi, negi〉 will be assigned to

f〈vi,negi〉 = negi ⊕ fvi

Example 2.3.17.

y

1

x

�� ��(¬y ∧ (1⊕ 1)) ∨ (y ∧ 1) = y

�� ��(¬x ∧ (1⊕ y)) ∨ (x ∧ y) = x↔ y

�� ��(1⊕ (x↔ y)) = ¬(x↔ y) = x⊕ y

�

23

2.3. Ordered Binary Decision Diagrams Chapter 2. Shared Binary Decision Diagrams

The term reducedness is slightly different for this OBDD variant.

Definition 2.3.18. A π-SOBDD
⊸

B with negative edges is called reduced if
for all nodes v1, v2 ∈ V with v1 6= v2 holds:

v1 6= v2 ⇒ fv1 6= fv2 and fv1 6= ¬fv2 .

The reduction rules have to be reformulated. The uniqueness of SOBDDs with
negative edges is guaranteed because there is only the one drain. This ensures
that negation is used the right way.

2.3.3.1. Algorithms on SOBDDs with negative edges

Algorithms for SOBDDs with negative edges can be described in a similar way
to those on SOBDDs. For this purpose, the find or add function has to be
modified (see Algorithm 7).

Algorithm 7 find or add(z, 〈w0, neg0〉 , 〈w1, neg1〉) on SOBDDs with negative
edges

Input: Variable z ∈ Z and tuples 〈w0, neg0〉 and 〈w1, neg1〉

with nodes w0 and w1 of a π-SOBDD
⊸

B
Output: Tuple 〈v, neg〉 with node v ∈ V and neg ∈ {0, 1}

if 〈w0, neg0〉 = 〈w1, neg1〉 then
return 〈w0, neg0〉

else if ∃v ∈ VI with succb(v) = wb and neg(v) = neg0 ⊕ neg1 then
return 〈v, neg1〉

else
v ← z-node v with succb(v) = wb and neg(v) = neg0 ⊕ neg1

return 〈v, neg1〉
end if

Now it is possible to rewrite every algorithm on SOBDDs to this OBDD vari-
ant. Algorithm 8 shows how this can be done for the APPLY algorithm.

2.3.3.2. Negation

The negative edges were introduced to increase the efficiency of SOBDDs.
With the negative edges the negation of a SOBDD function can be performed
in constant time.

24

Chapter 2. Shared Binary Decision Diagrams 2.3. Ordered Binary Decision Diagrams

Algorithm 8 APPLY(〈v1, neg1〉 , 〈v2, neg2〉 ,op) on SOBDDs with negative
edges

Input: Tuples 〈v1, neg1〉 and 〈v2, neg2〉 of a π-SOBDD
⊸

B
and operator op

Output: Tuple 〈v, neg〉 of a π-SOBDD with f〈v,neg〉 = f〈v1,neg1〉 op f〈v2,neg2〉

if v1 ∈ VT and v2 ∈ VT then
d← ¬neg1 op ¬neg2

return 〈v1,¬d〉
else

z ← min{var1(v1), var2(v2)}

〈
s01 , negs01

〉
← 〈succ0(v1), neg1 ⊕ neg(v1)〉〈

s02 , negs02

〉
← 〈succ0(v2), neg2 ⊕ neg(v2)〉

〈w0, negw0〉 ← APPLY(
〈
s01 , negs01

〉
,
〈
s02 , negs02

〉
, op)

〈
s11 , negs11

〉
← 〈succ1(v1), neg1〉〈

s12 , negs12

〉
← 〈succ1(v2), neg2〉

〈w1, negw1〉 ← APPLY(
〈
s11 , negs11

〉
,
〈
s12 , negs12

〉
, op)

return find or add(z, 〈w0, negw0〉 , 〈w1, negw1〉)
end if

25

2.4. Algebraic Computation Chapter 2. Shared Binary Decision Diagrams

Asymptotic Complexity for
Operator

ROBDDs SOBDDs SOBDDs with n. e.

APPLY |f1| · |f2| |f1| · |f2| |f1| · |f2|
EQUAL min{|f1|, |f2|} constant constant

COFACTOR |f | |f | |f |
NEGATION constant |f | constant

Table 2.4: Complexity of operators on different OBDD variants

2.3.3.3. Asymptotic Complexity

Table 2.4 shows the asymptotic complexity of all discussed OBDD variants.
SOBDDs with negative edges combine the advantages of ROBDDs and SOBDDs.

In all following results SOBDDs with negative edges will be termed SOBDDs.

2.4. Algebraic Computation

Symbolic and Algebraic Computation (SAP), also known as Computer Alge-
bra (CA), tries to automate mathematical computations of all sorts. Every
problem that can be expressed as computations on Boolean functions can be
represented as manipulations on OBDD functions.

2.4.1. Integer Computation

Every function f ∈ K(Z)
f : Eval(Z)→ K

can be seen as a function f ′:

f ′ : Eval(Z)→ {0, . . . , |Image(f)| − 1}.

An unsigned integer value n > 0 is encoded with its binary coding:

n =

⌊log2(n)⌋∑

i=0

ai · 2
i

with coefficients ai ∈ {0, 1}.

For different function values there are different coefficients ai. The different
values of a coefficient ai can be represented by an OBDD function14 fi. Thereby

14the function represented by an OBDD

26

Chapter 2. Shared Binary Decision Diagrams 2.4. Algebraic Computation

a tuple f = (f0, . . . , fk) ∈ B(Z)k+1 of SOBDD functions15 can be interpreted
as a function f

f : Eval(z1, . . . , zn)→ {0, . . . , 2k+1 − 1}

with

f(z1, . . . , zn) =

k∑

i=0

fi(z1, . . . , zn) · 2i.

Example 2.4.1. Let f(x) = 3x + 5 then f0, f1, f2, f3 are defined by:

f0(x) = ¬x

f1(x) = 0

f2(x) = ¬x

f3(x) = x

To verify the result two different cases have to be considered.

f(0) = f0(0) · 1 + f1(0) · 2 + f2(0) · 4 + f3(0) · 8

= 1 · 1 + 0 · 2 + 1 · 4 + 0 · 8

= 5

f(1) = f0(1) · 1 + f1(1) · 2 + f2(1) · 4 + f3(1) · 8

= 0 · 1 + 0 · 2 + 0 · 4 + 1 · 8

= 8

�

With this encoding all basic arithmetic operations can be represented by
SOBDDs.

2.4.1.1. Benchmark

To provide a comparison between different OBDD variants the OBDD sizes to
represent certain functions will be compared.

15It can also be represented by a tuple of ROBDD functions but this would only make
sense if different good variable orderings are known for the functions.

27

2.4. Algebraic Computation Chapter 2. Shared Binary Decision Diagrams

Let x = (x0, . . . , xk) and y = (y0, . . . , yk). The functions that serve as bench-
marks are:

fx =

k∑

i=0

xi · 2
i

fx + fy =

(
k∑

i=0

xi · 2
i

)
+

(
k∑

i=0

yi · 2
i

)

fx · fy =

(
k∑

i=0

xi · 2
i

)
·

(
k∑

i=0

yi · 2
i

)

Table 2.5 shows the sizes of the benchmark functions represented by a SOBDD
for different k. The π-SOBDDs for fx and fx + fy have polynomial size,
while the π-SOBDD for the multiplication fx · fy has exponential size. For all
functions the variable ordering

π = (xk, yk, . . . , x0, y0)

was used. This is the optimal variable ordering for the addition (fx +fy). This
can be seen if the function fx + fy is split-up to its functions for every binary
digit. Let fi be the function that represents the i-th bit of fx + fy and ci the
function that represents the add carry bit of function fi. The function fi can
be calculated with the variables xi and yi and the add carry bit ci−1, where
c−1 = 0:

fi = xi ⊕ yi ⊕ ci−1.

The add carry bit ci is calculated by:

ci =
(
xi−1 ∧ yi−1

)
∨
(
ci−1 ∧ (xi−1 ∨ yi−1)

)
.

To calculate the function fi the add carry bit functions cj (j = −1, . . . , i− 1)
are used. This can be seen when the functions are stored in a SOBDD these
functions are shared for every further computation. This explains why the
variable ordering

π′ = (x0, y0, . . . , xk, yk)

is not as good as the chosen one.

The multiplication has exponential size for every variable ordering. Empirical
results show that the ordering π is well capable for this function.

2.4.2. Matrix Representation

SOBDDs can also be used for matrix representation. Therefore the entries of
a matrix are encoded by Boolean variables xi (for the rows) and yj (for the
columns).

28

Chapter 2. Shared Binary Decision Diagrams 2.4. Algebraic Computation

SOBDD Nodes
k
|fx| |fx + fy| |fx · fy|

0 2 4 3
1 3 9 12
2 4 14 45
3 5 19 153
4 6 24 475
5 7 29 1511
6 8 34 4674
7 9 39 14558
8 10 44 45054
9 11 49 139404

10 12 54 429911

Table 2.5: Size of the benchmark functions represented by a SOBDD

Example 2.4.2. The matrix

1 1
1 1

3 3
3 3

can be expressed as truth tables

x1 y1 x0 y0 f0(·)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

x1 y1 x0 y0 f1(·)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

29

2.4. Algebraic Computation Chapter 2. Shared Binary Decision Diagrams

which are represented by the functions

f0(x1, y1, x0, y0) = x1 ↔ y1

f1(x1, y1, x0, y0) = x1 ∧ y1

�

Computations on matrices represented by SOBDDs cannot be reduced to basic
algebraic operations. The variables do not code the values16, they code the
rows and columns of a matrix – the values are coded by the functions fi. Thus
SOBDDs are not a handy data structure for matrix operations. ADDs and
NADDs, which are introduced later, are better suitable for that task.

16which is the case for the integer representation

30

3 Algebraic Binary Decision Diagrams

SOBDDs were introduced to represent functions over the domain {0, 1}. It was
shown that it is also possible to represent functions over small finite domains.
In computer algebra a lot of problems are expressed as matrix computations
but as mentioned in Section 2.4.2 SOBDDs were shown to be not suitable
for matrix manipulation. For this reason Algebraic Binary Decision Diagrams
(ADDs) were developed, which will be introduced in this chapter.

3.1. Syntax and Semantics

ADDs are similar to SOBDDs without negative edges, the main difference
being that ADDs can contain drains with arbitrary values.

Definition 3.1.1. [Algebraic Decision Diagram]: Let π be a variable or-
dering of Z. A π-ADD is as a π-SOBDD with one modification:

value : VT → R.

The values of the ADD function are evaluated in the same way as in regular
SOBDDs.

Example 3.1.2.

y

x

10 3

f(x, y) =

0 for ¬x

1 for ¬x ∧ ¬y

3 for ¬x ∧ ¬y

�

31

3.2. Algorithms Chapter 3. Algebraic Binary Decision Diagrams

Definition 3.1.3. [Function of an ADD]: Let A be an ADD with variable
set Z. A function fv ∈ B(Z) is assigned to every node v:

fv =

{
value(v) v ∈ VT

(1− z) · fsucc0(v) + z · fsucc1(v) v ∈ VI with var(v) = z.

With that definition the function represented in Example 3.1.2 can be calcu-
lated as follows:

f(x, y) = (1− x) · f |x=0 + x · f |x=1

= x ·
(
(1− y) · f |[x=1,y=0]+y·f |[x=1,y=1]

)
+ (1− x) · 0

= x · (y · 3 + (1− y) · 1)

= x · (2y + 1)

Theorem 3.1.4. [ADDs are universal]: For every function f ∈ R(Z) and
every variable ordering π there exists a π-ADD root node v ∈ v with fv = f .

Proof. The decision tree for f with respect to the variable ordering π is at the
same time a π-ADD.

The term reducedness can be used from OBDDs without modification. The
reduction rules can be applied the same way.

In the following a π-ADD is assumed to be reduced.

3.2. Algorithms

Algorithms on ADDs are based on the same observation as described in Lemma
2.3.7. To create reduced ADDs the find or add function for SOBDDs can be
applied without modifications.
Another important operation is the find or add drain function which avoids
the generation of redundant drains.

The algorithm for the multiplication will be described in detail. All other
algorithms can be formulated analogously. Lemma 2.3.7 builds the base for all
binary Boolean connectors for OBDDs. This can be expanded to any kind of
algebraic operator.

Lemma 3.2.1. Let f1, f2 ∈ R(Z), z ∈ Z and op be an algebraic operator
(e.g. addition, multiplication, maximum, . . .). Then the following holds:

f1 op f2 = ((1− z) · (f1|z=0 op f2|z=0)) + (z · (f1|z=1 op f2|z=1))

32

Chapter 3. Algebraic Binary Decision Diagrams 3.3. Algebraic Computation

Proof. The proof can be made with the observation from Lemma 2.3.7. For
every b ∈ {0, 1} holds:

(f1 op f2)|z=b = f1|z=b op f2|z=b.

A z-node v with fv = f1 op f2 can be expressed through

fv = f1 op f2

= ((1− z) · (f1 op f2)|z=0) + (z · (f1 op f2)|z=1)

= ((1− z) · (f1|z=0 op f2|z=0)) + (z · (f1|z=1 op f2|z=1))

Algorithm 9 MULTIPLICATION(v1, v2)

Input: Nodes v1, v2 of a π-ADD A
Output: Node v with fv = fv1 · fv2

if (v1 ∈ VT and value(v1) = 0) or (v2 ∈ VT and value(v2) = 0) then
return find or add drain(0)

else if v1 ∈ VT and v2 ∈ VT then
return find or add drain(value(v1) · value(v2))

else
z ← min{var(v1), var(v2)}

w0 ←MULTIPLICATION(fv1 |z=0, fv2|z=0)
w1 ←MULTIPLICATION(fv1 |z=1, fv2|z=1)

return find or add(z, w0, w1)
end if

Algorithm 9 illustrates the multiplication on ADDs. The terminal case where
one factor equals zero is checked just for performance reasons. Without this
check, the algorithm does not create redundant nodes but a lot of traversing
would be done without effect. The other terminal case, which is not checked
here, would be the test if one multiplier equals one. The remaining subtree
could be returned instead of traversing it without altering the values. Other
terminal cases that will be explained for an advanced variant of ADDs in Sec-
tion 4.3 are impossible on this basic variant of ADDs. Whenever the algorithm
reaches two drains the new value will be calculated and the corresponding ADD
function will be created from bottom to top.

3.3. Algebraic Computation

ADDs were introduced for algebraic computation, but opposed to their name
they are not well suitable for basic algebraic operations.

33

3.3. Algebraic Computation Chapter 3. Algebraic Binary Decision Diagrams

ADD Nodes
k

|fx| |fx + fy| |fx · fy|
0 3 6 6
1 7 18 24
2 15 44 93
3 31 98 352
4 63 208 1377
5 127 430 5358
6 255 876 21078
7 511 1770 83203
8 1023 3560 329908
9 2047 7142 1308670

10 4095 14308 5199280

Table 3.1: Size of the benchmark functions represented by an ADD

3.3.1. Basic Algebraic Operations

ADDs are a good data structure for function representation over small finite
domains. With an increasing number of elements the size of the ADD can grow
exponentially. This can easily be seen with the previously defined benchmark
functions.

3.3.1.1. Benchmark

Table 3.1 shows the size of the benchmark functions represented by an ADD.
This time, a slightly different variable ordering π = (x0, y0, . . . , xk, yk) was
used. At a first glance, it is surprising that ADDs are far worse than SOBDDs
to represent the benchmark functions. With a closer look thou, these results
can be explained.

The function fx has exactly 2k+1 different values. An ADD function that
represents 2k+1 values is equivalent to a complete binary tree (see Figure 3.1).

The number of nodes for the function fx can be calculated by:

|fx| =
k+1∑

i=0

2k = 2k+2 − 1

The chosen variable ordering π = (x0, y0, . . . , xk, yk) is well-suited for the func-
tion fx + fy. The computation of this function with ADDs is completely dif-
ferent from the computation with SOBDDs. In the ADD computation there is

34

Chapter 3. Algebraic Binary Decision Diagrams 3.3. Algebraic Computation

64 50

y

z z

y

1 7

zz

2 3

x

Figure 3.1: ADD function for fx with k = 2

no add carry bit because the values are calculated as a number and not with
their Boolean encoding. When two ADD functions are added, this can be seen
as the sum that is calculated with the school method.

Example 3.3.1.

1 2 3 4 5
+1 21 41 61 81 01

3 7 0 2 5

�

The add carry is needed to calculate the next digit. From that point of view
it is clear that the variables xi and yi should be interleaved and ordered from
x0, y0 to xk, yk.

The product function fx · fy has Θ(4k

k
) values. This complexity can be proven

with the prime number theorem [Corman 1990] together with the approxima-
tion for the prime sum. Thus it cannot be expected to find a good variable
ordering for the multiplication function.

But basic algebraic operations are not the intended application for ADDs.
They are designed for algebraic operations on matrices over a small domains.

3.3.2. Matrix Representation

With ADDs Matrix representation can be done straightforward. The idea to
encode a matrix with ADDs is to have the input variables xi coding the rows
and yi coding the columns.

Definition 3.3.2. Let f i ∈ K(Z) be defined by:

f i([x = a]) = ai.

35

3.3. Algebraic Computation Chapter 3. Algebraic Binary Decision Diagrams

With Definition 3.3.2 an entry ai,j of a matrix A ∈ K
n×m can be encoded with

an ADD function fai,j
:

fai,j
(x, y) = ai,j · f

i(x) · f j(y).

The sum over all ai,j has to be calculated to represent the matrix A:

fA(x, y) =

n∑

i=1

m∑

j=1

fai,j
(x, y).

3.3.2.1. Benchmark

The main purpose of ADDs is the representation of matrices. The sizes to
represent certain matrices will be compared to provide a comparison between
this OBDD variant and the later introduced NADDs.

The used variable ordering π = (x1, y1, . . . , xn, yn) for matrix representation
interleaves the variables for the rows (xi) and columns (yi). This has been
proven to be a good variable ordering because every entry usually depends on
the rows and columns of a matrix. The first matrix is the identity matrix

1lk = (δi,j)1≤i,j≤k =

{
1 for i = j

0 otherwise.

This matrix was chosen to show how the size of the compared BDD variants
vary for a small domain. (log2(k)− 1) · 3+5 nodes are needed to represent 1lk.

As a second example, the Hilbert matrix Hk = (1
i+j−1

)1≤i,j≤k was selected to
provide a comparison for a larger domain. Hk is symmetric so that the symbolic
representation of that matrix should have many coinciding nodes. The domain
of the Hilbert matrix increases with growing k and thus the number of nodes
to represent it. The number of different values for this matrix is 2k − 1 and
these values are ordered in a way so that a BDD representation is not very
compact. At least 3k nodes are needed to represent Hk with 2k − 1 different
values.

The results for the first two benchmark matrices represented by an ADD can
be seen in Table 3.2.

The last matrix is the sparse matrix ORANI678 taken from [Matrix Market].
This matrix represents the economic model of Australia with the data from
1968-1969. Figure 3.2 shows the shape of the matrix. The ORANI678 matrix
has a much worse ADD representation. To represent the 90158 entries of this
matrix 472187 ADD nodes are needed.

36

Chapter 3. Algebraic Binary Decision Diagrams 3.3. Algebraic Computation

Figure 3.2: Structure and city plot of ORANI678

ADD Nodes
k
|1lk| |Hk|

2 5 6
4 8 18
8 11 44

16 14 98
32 17 208
64 20 430

128 23 876
256 26 1770
512 29 3560

1024 32 7142

Table 3.2: Size of the benchmark matrices represented by an ADD

37

3.3. Algebraic Computation Chapter 3. Algebraic Binary Decision Diagrams

38

4 Normalized Algebraic Binary
Decision Diagrams

As seen in Chapter 3 ADDs are not a good data structure for basic algebraic
operations. They can better be used for matrix operations.

In this chapter we introduce a variant of OBDDs, called Normalized Algebraic
Binary Decision Diagrams (NADDs) which are designed to combine the advan-
tages of SOBDDs and ADDs. Further on, we will show how they are designed
and why they serve as a much better data structure for algebraic computation
than SOBDDs and ADDs do.

4.1. Definition and Semantics

The idea of NADDs is based on attributed edges. Instead of trying to reduce
the size of an OBDD with small additional effort while traversing the BDD1,
NADDs calculate a lot on their way to the drain.

A wide class of functions over Boolean variables can be viewed as linear func-
tions2. E.g. a polynomial function

p(x) =
n∑

i=0

aix
i

over the Boolean variable x it holds:

p(x) =
n∑

i=0

aix
i = a0 + a1 · x + a2 · x

2 + . . . + an · x
n

= a0 + a1 · x + a2 · x + . . . + an · x

= a0 + x · (a1 + a2 + . . . + an)

= a0 + x ·
n∑

i=1

ai

For this reason, a scalar multiplication factor λ and a translation τ would be
of great use to get a compact BDD representation for this kind of functions.

1like SOBDDs with negative edges
2with some restrictions

39

4.1. Definition and Semantics Chapter 4. Normalized Algebraic Binary Decision Diagrams

The intention of establishing NADDs is to achieve scalar multiplication and
translation in constant time without losing the advantages (like uniqueness,
etc.) of BDDs.

Definition 4.1.1. [(λ, τ)-Algebraic Binary Decision Diagram]: Let π be
a variable ordering of Z. A (λ, τ)-ADD is a tuple

A(λ,τ) = (V, VI , VT , value, λ0, τ0, succ0, λ1, τ1, succ1, var, value, 〈λ, τ, v〉)

that contains:

• a finite set of nodes V = VI ∪VT with VI ∩VT = ∅ (VI contains the inner
nodes and VT the drains),

• a map value:

value : VT → R

• functions succ0 and succ1

succ0, succ1 : VI → V

that map every inner node to its successors,

• maps λi, τi with i ∈ {0, 1}

λi, τi : VI → R

• a function var : VI → Z that yields a labeling of the nodes with variables,

• a tuple of root node triples:

〈λ, τ, v〉 =
(〈

λ̂1, τ̂1, v1

〉
, . . . ,

〈
λ̂k, τ̂k, vk

〉)
∈ (R×R× V)k

Additionally, for all v ∈ VI and b ∈ {0, 1} the following must hold:

var(v) <π var(succb(v)) if succb ∈ VI .

This modification of ADDs leads to an intuitive interpretation of a function
represented by a (λ, τ)-ADD.

40

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.1. Definition and Semantics

(1,�3) (2,1)
(1,0)(3,2)

(2,1)

(4,1)(�2,4)
0

x

y

2-1

y
�� ��7y − 1

�� ��2− y

�
�

�

(1− x) · (1 · (7y − 1)− 3)
+ x · (2 · (2− y) + 1)

�
�

�

18x− 18xy + 14y − 7
= 2 · (9x− 9xy + 7y − 4) + 1

Figure 4.1: Bottom-up definition of a function represented by a (λ, τ)-ADD

Definition 4.1.2. [Function of a (λ, τ)-ADD]: Let A be a (λ, τ)-ADD
with variable set Z. A function fv ∈ R(Z) is assigned to every node v:

fv =

value(v) v ∈ VT

(1− z) · (λ0(v) · fsucc0(v) + τ0(v)) v ∈ VI with var(v) = z

+ z · (λ1(v) · fsucc1(v) + τ1(v))

Every root node tuple
〈
λ̂i, τ̂i, vi

〉
will be assigned to

f〈 bλi,bτi,vi〉 = λ̂i · fvi
+ τ̂i

Figure 4.1 shows a (λ, τ)-ADD and its represented function.

(λ, τ)-ADDs were defined over the field R. Every other field K was also pos-
sible, but R was chosen to compare this new BDD variant against SOBDDs

41

4.1. Definition and Semantics Chapter 4. Normalized Algebraic Binary Decision Diagrams

and ADDs.

Theorem 4.1.3. [(λ, τ)-ADDs are universal]: For every function f ∈ R(Z)
and every variable ordering π exists a π-(λ, τ)-ADD tuple 〈λ, τ, v〉 with

λ · fv + τ = f.

Proof. As shown in Theorem 3.1.4 ADDs are a universal data structure. Every
ADD can be converted into a (λ, τ)-ADD.

y

x

10 3

 (1,0)(1,0)(1,0)
(1,0)
(1,0)

1 30

x

y

The test for equality on SOBDDs and ADDs can be done in constant time be-
cause SOBDDs and ADDs yield a unique data structure for any given switching
respectively R-function. Unfortunately this does not hold for (λ, τ)-ADDs.

Example 4.1.4. The function f(x) = 3x + 4 can be represented in different
ways, e.g.: (1,0)
(1,0) (1,0)

4

x

7

(2,1)(3,0)
(1,4)
x

10

The function g(x) = 2 · f(x) + 1 should share the same nodes as f(x). Instead
of only changing the parameters λ and τ completely different nodes can be
created.

42

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.1. Definition and Semantics

'

&

$

%

(2,1)(3,0)
(1,4)
x

10

 (3,0)
(2,9)
(2,1)
10

x

(2,1)(3,0)
(1,4)
x

10

 (1,0)(1,0)
(1,0)

159

x

�

As seen in Section 2.3.3 there are problems to get a unique data structure using
attributed edges. The first step towards a unique data structure is to restrict
the (λ, τ)-ADD. Multiple drains should be forbidden. But, which drain should
be used?

The one drain could be taken3 but two cases have to be differentiated:

• node v ∈ VI : Calculation could be done as usual:

f = λ · fv + τ.

• node v ∈ VT : The value of a function pointing to the drain depends on
both parameters λ and τ :

f = λ + τ

as we assume value(v) = 1.

It is much better to chose the zero drain, because no different cases have to
be considered for inner nodes and the drain. The value of a function pointing
to the zero drain depends on the translation parameter τ only, which makes
the interpretation more intuitive. For a given function f(x) = g(x) + b the
parameter b is the translation of g(x). If g(x) = 0 then f is the constant
function b. Hence, every constant function can be seen as a translation from
the zero function.

3like for SOBDDs with negative edges do

43

4.2. Canonicity Chapter 4. Normalized Algebraic Binary Decision Diagrams

(0,4)
(1,0)
(0,7)

0

x

(3,4)
(0,0)(0,1)

0

x

Figure 4.2: The zero drain does not ensure uniqueness

This restriction alone does not help to get a unique data structure (see Fig-
ure 4.2).

The next restriction is to normalize (λ, τ)-ADDs.

Definition 4.1.5. [Normalized Algebraic Binary Decision Diagram]: A
(λ, τ)-ADD A(λ,τ) is called normalized if for every node v ∈ VI holds:

• fv(η) ∈ [0, 1] ∀η ∈ Eval(Z)

• ∃η ∈ Eval(Z) with fv(η) = 0

• ∃ζ ∈ Eval(Z) with fv(ζ) = 1

A normalized (λ, τ)-ADDA(λ,τ) will be called NADD and denoted A[0,1]. Every
NADD contains only the zero drain.

The main idea behind NADDs is that a lot of functions can possibly share the
same nodes. The normalization of (λ, τ)-ADDs makes it possible to calculate
the minimum and maximum value of a function in constant time whereas no-
normalized (λ, τ)-ADDs have to traverse the whole diagram. This property
ensures that a (λ, τ)-ADD A(λ,τ) can be converted into a NADD A[0,1] with
the complexity Θ(|A(λ,τ)|). This conversion has to be done from the bottom
to the top level and must be canonical to provide a unique data structure.

4.2. Canonicity

The idea behind converting a (λ, τ)-ADD into a NADD relies on modifying
the parameters λ and τ of the incoming edges.

Theorem 4.2.1. If the root node v ∈ VI of a (λ, τ)-ADD function f〈λ,τ,v〉

is multiplied by a scalar µ ∈ R\{0} and translated by ν ∈ R the function

44

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.2. Canonicity

parameters λ and τ can be modified in such a way that the represented function
does not change and the subgraphs of v do not have to be altered (see Figure
4.3).

Proof. Let v be a z-node. The scalar multiplication and translation of fv leaves
the subgraphs of v untouched. This can directly be seen from Definition 4.1.2:

f〈µ,ν,v〉 = µ · fv + ν

=
µ ·
(

(1− z) · (λ0(v) · f |z=0 + τ0(v))
+ z · (λ1(v) · f |z=1 + τ1(v))

)
+ ν

=
(1− z) ·

(
(µ · λ0(v)) · f |z=0 + (µ · τ0(v) + ν)

)

+ z ·
(
(µ · λ1(v)) · f |z=1 + (µ · τ1(v) + ν)

)

Let v′ be the modified node with λi(v
′) = µ · λi(v) and τi(v

′) = µ · τi(v) + ν,
i = 0, 1. All other parameters are taken from v without change.

fv and fv′ represent different functions provided that (µ, ν) 6= (1, 0):

µ · fv + ν = fv′

⇔ fv =
fv′−ν

µ

Thus, the function parameters λ and τ cannot be taken for v′. But these
parameters can be modified so that the represented functions become equal:

f〈λ,τ,v〉 = λ · fv + τ

= λ ·

(
fv′ − ν

µ

)
+ τ

=
λ

µ
· fv′ +

(
τ −

λν

µ

)

= f〈λ
µ

,τ−λν
µ

,v〉

Theorem 4.2.1 can be generalized for every inner node. This ensures that a
(λ, τ)-ADD can be converted into a NADD in a bottom up strategy.

NADDs are defined to be normalized. But which function has to be used to
normalize a (λ, τ)-ADD?

Example 4.2.2. Let a, b ∈ R with a < b:

φ : [a, b]→ [0, 1]

is defined by

φ(x) =
x− a

b− a
for all x ∈ [a, b] .

45

4.2. Canonicity Chapter 4. Normalized Algebraic Binary Decision Diagrams

(3,9)(6,3)
(1,0)
x (1,2)(2,0)

(3,3)
x

Figure 4.3: Modifying the parameters without changing the function

a b 0 1

φ(a) φ(b)

This is not the only function that maps [a, b] to [0, 1]. The function

ϕ(x) =
b− x

b− a

a b 0 1

ϕ(a)

ϕ(b)

achieves the same.

�

As seen in Example 4.2.2 normalization is not enough to provide a unique data
structure. Other restrictions have to be made:

• φ′(x) = 1
b−a

• φ(a) = 0

• φ(b) = 1

Definition 4.2.3. Let a be the minimum and b the maximum value of a given
function f with a < b. The normalization function φf : [a, b]→ [0, 1] is defined
by:

φf(x) =
x− a

b− a
.

46

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.2. Canonicity(1,0)
(0,1)(0,0)

0

x (0,1)
(_1,1)
(0,0)x

0

(2,1)(4,0)
(1,0)
x

0

Figure 4.4: Different reduced normalized (λ, τ)-ADDs representing the same
function

Lemma 4.2.4. The normalization function φf is invariant under translation,
i.e. φf(x) = φf+τ (x + τ).

Proof. Let f be the given function and a, b ∈ R with a < b its minimum and
its maximum respectively and τ ∈ R the translation.

φf+τ (x + τ) =
(x + τ)− (a + τ)

(b + τ)− (a + τ)

=
x− a

b− a

= φf(x)

The negative edges were introduced to negate functions in a SOBDD in con-
stant time. This could be done because a function and its negation were
represented by the same subtree. This concept can be expanded on NADDs.

Definition 4.2.5. A NADD A[0,1] is called reduced if for every two nodes
v1, v2 ∈ V , for all scale factors λ ∈ R\{0} and translations τ ∈ R the following
holds:

v1 6= v2 ⇒ fv1
6= λ · fv2

+ τ

In the following, NADDs are assumed to be reduced.

But reducedness alone does not guarantee uniqueness. Figure 4.4 shows dif-
ferent reduced normalized (λ, τ)-ADDs that represent the same function.

47

4.2. Canonicity Chapter 4. Normalized Algebraic Binary Decision Diagrams

The situation is similar to the one with SOBDDs with negative edges. There,
the negation can only be applied to the zero successor of a node. This method
can be extended to NADDs.

Every node v ∈ VI of a NADD is normalized, i.e.

• min{fv(η)|η ∈ Eval(Z)} = 0

• max{fv(η)|η ∈ Eval(Z)} = 1.

This way the maximum and minimum value of fv can be calculated as follows.
For simplification, we write λi instead of λi(v) and τi instead of τi(v). Let:

a = min{(λ0 + τ0), τ0, (λ1 + τ1), τ1}

b = max{(λ0 + τ0), τ0, (λ1 + τ1), τ1}

The different parameter values can be interpreted as values in the interval
[a, b]. For instance:

a b

τ0 τ1 (λ0 + τ0) (λ1 + τ1)

All possible λi and τi have to be combined in a unique way. This can be
assured if the normalization function is invariant under scalar multiplication
and translation. In Lemma 4.2.4 we have proven the translation invariance
of the normalization function φf . Unfortunately, this does not hold for scalar
multiplication.

Theorem 4.2.6. The normalization function is not invariant under scalar
multiplication.

Proof. Let f be the given function and a, b with a < b its minimum and
its maximum respectively. If this function would be invariant under scalar
multiplication then the following holds:

φλ·f(λ · x) = φf(x).

This holds for all λ ∈ R
>0. For λ = −1 the minimum and maximum values

are −b and −a respectively.

φ−f(−x) =
b− x

b− a
6=

x− a

b− a
= φf(x).

48

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.2. Canonicity

Theorem 4.2.6 shows that normalization cannot ensure uniqueness. But the
parameters can be modified in a way that the normalization function becomes
invariant under scalar multiplication. For this reason, additional constraints
for NADDs have to be expressed.

Let 〈λ, τ, v〉 be a NADD-tuple and λi = λi(v), τi = τi(v).

• 0-Scalar: 〈λ, τ, v〉 with v ∈ VT ⇔ λ = 0

• λ0-Positivity: v ∈ VI ⇒ λ0 ≥ 0

• λ1-Positivity: v ∈ VI with λ0 = 0⇒ λ1 ≥ 0

• τ0-Arrangement: v ∈ VI with λ0 = λ1 = 0⇒ τ0 ≤ τ1

The first restriction ensures that constant functions are uniquely represented
by the zero drain. All other limitations have to be made to guarantee that all
possible λi and τi are handled the same way.

The case λ0 = λ1 = 0 and τ0 = τ1 is equivalent to the elimination rule (see
page 9). Thus, this is not a possible instance for the parameters.

Example 4.2.7 shows how it can be guaranteed that λi and τi fulfill these
restrictions.

Example 4.2.7. The parameters can be modified so that all limitations will
be fulfilled whenever one of the restrictions is violated . This can be reached
by multiplying all parameters with −1. Theorem 4.2.1 shows that this modi-
fication is valid.

• λ0-Positivity: v ∈ VI with λ0 < 0

a b

(λ1 + τ1) τ1 (λ0 + τ0) τ0
⇒

−b −a

−τ0 −(λ0 + τ0) −τ1 −(λ1 + τ1)

• λ1-Positivity: v ∈ VI with λ0 = 0 and λ1 < 0

a b

(λ1 + τ1) τ1τ0
⇒

−b −a

−τ0−τ1 −(λ1 + τ1)

• τ0-Arrangement: v ∈ VI with λ0 = λ1 = 0 and τ0 > τ1

a b

τ1 τ0
⇒

−b −a

−τ0 −τ1

�

49

4.2. Canonicity Chapter 4. Normalized Algebraic Binary Decision Diagrams

With these restrictions the normalization function is invariant under scalar
multiplication and translation. In the following these limitations will be used
for NADDs.

Theorem 4.2.8. [NADDs are universal]: For every function f ∈ R(Z)
and every variable ordering π there exists a π-NADD tuple 〈λ, τ, v〉 with

λ · fv + τ = f.

Proof. As shown in Theorem 4.1.3 there exists a (λ, τ)-ADD function for f .
All drains of the (λ, τ)-ADD can be converted into a (λ, τ)-ADD with only the
zero drain.

x

3 4

 (0,3)(0,4)
0

x

The normalization function can be seen as scalar multiplication with following
translation. With Theorem 4.2.1 this (λ, τ)-ADD can be converted into a
NADD.

Lemma 4.2.9. Let f : Eval(Z)→ R be a non-constant function and

a = min f(η), b = max f(η)

where η ranges over all evaluations for Z.

Furthermore, let λ, τ ∈ R and g : Eval(Z)→ R such that

min
η∈Eval(Z)

g(η) = 0 and max
η∈Eval(Z)

g(η) = 1.

Then the following statements are equivalent:

(i)
f = λ · g + τ

(ii)
〈λ, τ, g〉 = 〈−(b− a), a, 1− (φf ◦ f)〉

or 〈λ, τ, g〉 = 〈−(b− a), b, 1− (φf ◦ f)︸ ︷︷ ︸
=(1−φf)◦f

〉

50

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.2. Canonicity

Proof. We assume that f = λ · g + τ as in (i). f is a non-constant function
and from this it follows that λ 6= 0 and b− a 6= 0.

• λ > 0 :

a = min f(η) = λ · 0 + τ = τ

b = max f(η) = λ · 1 + τ = λ + τ
⇒ λ = b− a

(b− a) · g(η) + a = f(η)
⇔ (b− a) · g(η) = f(η)− a

⇔ g(η) = f(η)−a

b−a
= φf ◦ f

Note that “⇐“ proves the first case of (ii) ⇒ (i).

• λ < 0 :

a = min f(η) = λ · 1 + τ = λ + τ

b = max f(η) = λ · 0 + τ = τ
⇒ λ = a− b = −(b− a)

−(b− a) · g(η) + b = f(η)
⇔ −(b− a) · g(η) = f(η)− b

⇔ g(η) = b−f(η)
b−a

= ϕf ◦ f

ϕ can be expressed through φ so that only one normalization function has to
be used.

1− φf (x) = 1−
x− a

b− a

=
b− a− (x− a)

b− a

=
b− x

b− a

= φ−f(−x)

= ϕf(x)

From Lemma 4.2.9 it follows that there are just two ways to split a function
f into its normalized component g and capable λ and τ . It is essential to
prove that only one of the decompositions is valid for NADDs, i.e. for every
non-constant function f = f〈λ,τ,v〉 holds either fv = φf ◦ f or fv = 1− (φf ◦ f).

Corollary 4.2.10. Let f : Eval(Z) → R be a non-constant function with
Z = {z}, i.e. f |z=0 and f |z=1 are constant functions with f |z=0 6= f |z=1.
Then, f can uniquely be represented by a NADD.

51

4.2. Canonicity Chapter 4. Normalized Algebraic Binary Decision Diagrams

Proof. The 0-Scalar property ensures that every constant function with value
c ∈ R has a unique NADD representation:

c = 0 · f
0

+ c = f〈0,c, 0 〉.

Let c0 = f |z=0 and c1 = f |z=1 the represented values of the cofactors of f .
f can be expressed as:

f = λ · z + τ

with λ = c1 − c0 and τ = c0. The uniqueness of the constant function repre-
sentation indicates that λ0(v) = λ1(v) = 0 for a z-node v ∈ VI that represents
φf ◦ f or 1− (φf ◦ f). The τ0-Arrangement property defines which function is
represented by v.

• c0 < c1 ⇔ λ > 0⇒ fv = φf ◦ f

• c0 > c1 ⇔ λ < 0⇒ fv = 1− (φf ◦ f)

Lemma 4.2.9 shows the uniqueness of the triple 〈λ, τ, v〉 with f = f〈λ,τ,v〉.

Theorem 4.2.11. [NADDs are unique]: The NADD representation of a
function f : Eval(Z)→ R with given variable ordering π is unique4.

Proof. We may assume without loss of generality that all variables in Z are
essential for f . By induction on n = |Z| (number of variables) we show that
for any function f : Eval(Z)→ R where a = min f(η), b = max f(η) it holds:

There exists a unique triple 〈λ, τ, v〉 such that

f = λfv + τ

where v is a NADD node and λ, τ ∈ R and λ = 0 iff f is constant.

Basis of induction:

• n = 0 : Then f is constant, i.e. a = b. In a NADD only the zero drain is
allowed. This, together with the 0-Scalar property induces that the only
chance to obtain a NADD for f is to use the expansion:

f = 0︸︷︷︸
=λ

·f
0

+ a︸︷︷︸
=τ

.

• n = 1 : Follows by Corollary 4.2.10.

4Uniqueness is understood with respect to isomorphism of the sub NADDs with root v.

52

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.2. Canonicity

Step of induction n− 1⇒ n (n > 1) :
We may assume without loss of generality that z is the first essential variable
of the given variable ordering π. By Lemma 4.2.9 f can be represented by:

f = λ · g + τ

with λ 6= 0, min g = 0 and max g = 1 in exactly two ways that can be
distinguished by λ > 0 or λ < 0. Every z-node v has the following form:

z

(
λ, τ
)

(
λ1, τ1

)(
λ0, τ0

)

w0 w1

v

As a consequence of Lemma 4.2.9 each normalized node v can only represent
either g or 1− g.

We also use the decomposition into the cofactors f |z=0 and f |z=1 of f .

λ · g + τ = f

= z · f |z=1 + (1− z) · f |z=0

= z · (f |z=1 − f |z=0) + f |z=0

This equation leads to:

g =
z · (f |z=1 − f |z=0) + f |z=0 − τ

λ
.

The cofactors of g have the following form:

g|z=0 =
f |z=0 − τ

λ
and g|z=1 =

f |z=1 − τ

λ
.

According to Lemma 4.2.9 every non-constant cofactor of f can be expressed
as:

f |z=i = λi · gi + τi

with i = 0, 1. If f |z=i is a non-constant function then this also holds for

g|z=i =
λi · gi + τi − τ

λ
.

But this equation does not always hold. The case where both cofactors are
constant functions was already proven by the induction basis (n = 1). This
way, we only have to show the three remaining situations.

53

4.2. Canonicity Chapter 4. Normalized Algebraic Binary Decision Diagrams

• Case 1: f |z=0 is constant, i.e. f |z=1 has n− 1 essential variables.
The induction basis (n = 0) and the induction hypothesis yield that g|z=0

and g|z=1 can uniquely be represented by
〈

0,
f |z=0 − τ

λ
, 0

〉
and

〈
λ1

λ
,
τ1 − τ

λ
, w1

〉
.

The induction hypothesis implies that exactly one normalized
(λ, τ)-ADD representation of g1 or 1− g1 does not violate the conditions
for NADDs. Without loss of generality we assure that fw1 = g1.

As mentioned above, we have to differentiate two cases:

λ = b− a

τ = a

0

z

(b− a, a)

(
0, f |z=0−a

b−a

)

(
λ1

b−a
, τ1−a

b−a

)

w1

λ = −(b− a)

τ = b

0

z

(−(b− a), b)

(
0, b−f |z=0

b−a

)

(
−λ1

b−a
, b−τ1

b−a

)

w1

The λ1-Positivity is violated by either λ1

b−a
or −λ1

b−a
. Thus, a NADD node

v ∈ VI can only represent one of the two functions g or 1 − g, but not
both.

• Case 2: f |z=1 is constant, i.e. f |z=0 has n− 1 essential variables.
This case can be proven analogously.

z

0

(b− a, a)

(
0, f |z=1−a

b−a

)

(
λ0

b−a
, τ0−a

b−a

)

w0

z

0

(−(b− a), b)

(
0, b−f |z=1

b−a

)

(
−λ0

b−a
, b−τ0

b−a

)

w0

54

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.3. Algorithms

The λ0-Positivity induces if g = φf ◦ f or 1 − g = 1 − (φf ◦ f) violates
the NADD conditions.

• Case 3: f |z=0 and f |z=1 are non-constant functions, i.e. f |z=0 and f |z=1

have at most n− 1 essential variables.
The induction hypothesis induces that g|z=0 and g|z=1 can uniquely be
represented by

〈
λ0

λ
,
τ0 − τ

λ
, w0

〉
and

〈
λ1

λ
,
τ1 − τ

λ
, w1

〉
.

As in case 1, the induction hypothesis induces that only one function can
be represented by w0 and w1. Furthermore, we assume without loss of
generality that fw0 = g0 and fw1 = g1.

z

(b− a, a)

(
λ1

b−a
, τ1−a

b−a

)(
λ0

b−a
, τ0−a

b−a

)

w0 w1

z

(−(b− a), b)

(
−λ1

b−a
, b−τ1

b−a

)(
−λ0

b−a
, b−τ0

b−a

)

w0 w1

The λ0-Positivity is violated by either λ0

b−a
or −λ0

b−a
. Thus, a NADD node

v ∈ VI can only represent one of the two functions g or 1 − g, but not
both.

This proves the induction hypothesis.

4.3. Algorithms

The reduction rules for NADDs are more complicated than for all other shown
OBDD variants. So the find or add function has to be reformulated. The
concept of all algorithms on OBDDs was to build the resulting function from
the bottom to the top. As seen in Section 2.3.3 situations which violate the
given restrictions have to be eliminated. One restriction for SOBDDs with neg-
ative edges was that only the zero successor could have a negative edge. The
situation with NADDs is similar to this. Algorithm 10 shows the find or add
function for NADDs. The λ0-Positivity, λ1-Positivity and the τ0-Arrangement
are directly checked in this algorithm. The 0-Scalar property cannot be guar-
anteed in the find or add function. It must be checked in every algorithm

55

4.3. Algorithms Chapter 4. Normalized Algebraic Binary Decision Diagrams

Algorithm 10 find or add(z, 〈λ0, τ0, w0〉 , 〈λ1, τ1, w1〉)

Input: Variable z ∈ Z and tuples 〈λ0, τ0, w0〉 , 〈λ1, τ1, w1〉 of a π-NADD
Output: Tuple 〈λ, τ, v〉

if 〈λ0, τ0, w0〉 = 〈λ1, τ1, w1〉 then
return 〈λ0, τ0, w0〉

else if (λ0 < 0) or (λ0 = 0 ∧ λ1 < 0) or (λ0 = 0 ∧ λ1 = 0 ∧ τ1 < τ0) then
a← min{−(λ0 + τ0),−τ0,−(λ1 + τ1),−τ1}
b← max{−(λ0 + τ0),−τ0,−(λ1 + τ1),−τ1}

t0 ←
〈
−λ0

b−a
, −τ0−a

b−a
, w0

〉

t1 ←
〈
−λ1

b−a
, −τ1−a

b−a
, w1

〉

if ∃v ∈ VI with var(v) = z, 〈λ0(v), τ0(v), succ0(v)〉 = t0 and
〈λ1(v), τ1(v), succ1(v)〉 = t1

then

return 〈a− b,−a, v〉
else

v ← new z-node v with 〈λ0(v), τ0(v), succ0(v)〉 = t0 and
〈λ1(v), τ1(v), succ1(v)〉 = t1

return 〈a− b,−a, v〉
end if

else
a← min{(λ0 + τ0), τ0, (λ1 + τ1), τ1}
b← max{(λ0 + τ0), τ0, (λ1 + τ1), τ1}

t0 ←
〈

λ0

b−a
, τ0−a

b−a
, w0

〉

t1 ←
〈

λ1

b−a
, τ1−a

b−a
, w1

〉

if ∃v ∈ VI with var(v) = z, 〈λ0(v), τ0(v), succ0(v)〉 = t0 and
〈λ1(v), τ1(v), succ1(v)〉 = t1

then

return 〈b− a, a, v〉
else

v ← new z-node v with 〈λ0(v), τ0(v), succ0(v)〉 = t0 and
〈λ1(v), τ1(v), succ1(v)〉 = t1

return 〈b− a, a, v〉
end if

end if

56

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.4. Algebraic Computation

on NADDs. All calculations used in Algorithm 10 are results from Theorem
4.2.11.

Algorithm 11 explains the multiplication on NADDs. As described above the
0-Scalar property is checked here to guarantee a unique NADD representation.
This algorithm is a good example why this property must be checked in every
algorithm. In this case the only chance to get a constant function (if one
function is non-constant) is the multiplication by 0. In the addition the only
possible case would be if f and −f are added. The check for such 0-Scalar
possibilities is the main difference in writing algorithms for NADDs compared
to ADDs.

The terminal case if one multiplier is constant is a great performance enhance-
ment. No more traversation has to be performed if a result can be calculated
with scalar multiplication and translation.

4.4. Algebraic Computation

NADDs were developed to provide a suitable data structure for algebraic com-
putations even with a large domain. The sizes of ADDs are greatly influenced
by the domain. The distances of the represented values of a function influences
a NADD. The upper bound for the size of a NADD size is the ADD size which
can easily be seen in the transformation from an ADD into a (λ, τ)-ADD. In
many cases the size of a NADD is much smaller than the ADD size of a func-
tion. The relationship between SOBDDs and SOBDDs with negative edges is
similar to the relationship between ADDs and NADDs.

4.4.1. Basic Algebraic Computation

In this section the ability for algebraic computations with NADDs will be
analyzed.

4.4.1.1. Benchmark

Table 4.1 shows the results of the benchmark functions represented by NADDs.
The used variable ordering is π = (x0, . . . , xk, y0, . . . , yk). Unlike the situation
for ADDs, this is the optimal ordering for addition and multiplication for
NADDs. The representation of the function fx is linear in terms of size. Every
new variable splits the represented domain to two parts with equal distances.
For that kind of function the normalization is optimal. For this benchmark
function all variable orderings are optimal. Functions with equal distances in
their divided subtrees can be represented with one node on this level. Why

57

4.4. Algebraic Computation Chapter 4. Normalized Algebraic Binary Decision Diagrams

Algorithm 11 MULTIPLICATION(〈λ0, τ0, v0〉 , 〈λ1, τ1, v1〉)

Input: Tuples 〈λ0, τ0, v0〉 , 〈λ1, τ1, v1〉 of a π-NADD
Output: Tuple 〈λ, τ, v〉 with λ · fv + τ = (λ0 · fv0 + τ0) · (λ1 · fv1 + τ1)

if v0 ∈ VT then
if τ0 = 0 then

return
〈
0, 0, 0

〉

else
return 〈τ0 · λ1, τ0 · τ1, v1〉

end if
else if v1 ∈ VT then

if τ1 = 0 then

return
〈
0, 0, 0

〉

else
return 〈τ1 · λ0, τ0 · τ1, v2〉

end if
else

z ← min{var(v0), var(v1)}

〈λ0,0, τ0,0, v0,0〉 ← 〈λ0 · λ0(v0|z=0), λ0 · τ0(v0|z=0) + τ0, v0|z=0〉
〈λ1,0, τ1,0, v1,0〉 ← 〈λ1 · λ0(v1|z=0), λ1 · τ0(v1|z=0) + τ1, v1|z=0〉
〈λw0, τw0, w0〉 ←MULTIPLICATION(〈λ0,0, τ0,0, v0,0〉 , 〈λ1,0, τ1,0, v1,0〉)

〈λ0,1, τ0,1, v0,1〉 ← 〈λ0 · λ1(v0|z=1), λ0 · τ1(v0|z=1) + τ0, v0|z=1〉
〈λ1,1, τ1,1, v1,1〉 ← 〈λ1 · λ1(v1|z=1), λ1 · τ1(v1|z=1) + τ1, v1|z=1〉
〈λw1, τw1, w1〉 ←MULTIPLICATION(〈λ0,1, τ0,1, v0,1〉 , 〈λ1,1, τ1,1, v1,1〉)

return find or add(z, 〈λw0, τw0, w0〉 , 〈λw1, τw1 , w1〉)
end if

58

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.4. Algebraic Computation

NADD Nodes
k
|fx| |fx + fy| |fx · fy|

0 2 3 3
1 3 5 6
2 4 7 11
3 5 9 20
4 6 11 37
5 7 13 70
6 8 15 135
7 9 17 264
8 10 19 521
9 11 21 1034

10 12 23 2059

Table 4.1: Size of the benchmark functions represented by a NADD

the chosen variable ordering is optimal for fx + fy can easily be seen. The
principle for a NADD is that the values are calculated on the way to the drain.
Scalar multiplication and translation leave the structure of a NADD function
untouched. Whenever the first function reaches the drain no more traversing
and calculating is needed in the second function. The number of nodes for the
functions fx + fy is exactly:

2 · (k + 1) + 1.

The multiplication function fx · fy has still an exponential sized NADD but
with a much smaller increasing rate than the ADD. Recall that any ADD
representing the multiplication has Θ(4k) nodes. The size of this function
represented by a NADD can be calculated recursively:

|f(x0,...,xk) · f(y0,...,yk)| = 2 · |f(x0,...,xk−1) · f(y0,...,yk−1)| − k + 1.

Thus,

|fx · fy| = 2k+1 + k + 1.

A detailed comparison between all benchmarks will be given in Chapter 5.

4.4.2. Matrix Representation

The matrix representation with NADDs is similar to the representation with
ADDs.

59

4.5. Implementation Chapter 4. Normalized Algebraic Binary Decision Diagrams

NADD Nodes
k
|1lk| |Hk|

2 3 3
4 6 8
8 9 20

16 12 46
32 15 100
64 18 210

128 21 432
256 24 878
512 27 1770

1024 30 3556

Table 4.2: Size of the benchmark matrices represented by a NADD

4.4.2.1. Benchmark

The results for the benchmark matrices are shown in Table 4.2. The identity
matrix 1lk can be seen as a Boolean function and thus the normalization has
no effect. In this case a NADD has the same size as a SOBDD with negative
edges representing the same function.

The Hilbert matrix Hk cannot be represented in a compact way because of the
structure of the values.

But the ORANI678 matrix has a more compact NADD representation with
90385 NADD nodes to store the 90158 entries.

4.5. Implementation

The implementation of NADDs for this thesis can be found in [JJS-BDD].
There it can be seen that the realization of NADDs differs a bit from the the-
oretical point of view. In practice real values cannot be represented exactly.
Computers store an approximation of the value. Thus, the equality of two tu-
ples cannot be calculated by the comparison of the exact values. Like in many
other applications this problem can be solved by defining tolerance values.

For that reason two NADD-tuples 〈λ0, τ0, w0〉 and 〈λ1, τ1, w1〉 are called ε-equal
if for given λε > 0 and τε > 0:

(|λ0 − λ1| ≤ λε) ∧ (|τ0 − τ1| ≤ τε) ∧ (w0 = w1).

60

Chapter 4. Normalized Algebraic Binary Decision Diagrams 4.5. Implementation

0.05

0.1

0.15

0.2

0.05

0.1

0.15

0.2

50

100

150

z

0.05

0.1

0.15

0.05

0.1

0.15

0.2

τετε

λελε

Figure 4.5: Number of nodes for the 32 × 32 Hilbert matrix with different
tolerance values

4.5.1. Influence of λε and τε

λε and τε have influence on the find or add function. This means that the
number of nodes can vary for different tolerance values.

Figure 4.5 shows the number of nodes for the Hilbert matrix of size 32 × 32
with different tolerance values. Different τε and λε values are inscribed on the
x respectively y-axis. With increasing tolerance values the number of nodes
and with that the accuracy of the represented function is decreasing. The
error for that function can be measured by the maximum absolute error for
all matrix entries. Figure 4.6 shows the influence of different tolerance values
on the maximum absolute error. It can be seen that the scaling factor has
more influence on the result than the translation. In practice it is reasonable
to choose small tolerance values to get the best accuracy. If the values are
chosen too small the number of nodes increases without increasing accuracy.
This situation causes the loss of uniqueness for too small tolerances.

4.5.2. Storing the node parameters

A NADD node uses much more memory than a normal SOBDD or ADD node.
A compact representation of nodes is important to implement NADDs. It is
not necessary to store all four values of a node. Every node in a NADD is
normalized, i.e.

min{(λ0 + τ0), τ0, (λ1 + τ1), τ1} = 0

61

4.5. Implementation Chapter 4. Normalized Algebraic Binary Decision Diagrams

0.05

0.1

0.15

0.2

0.05

0.1

0.15

0.2

0

0.1

0.2

z

0.05

0.1

0.15
τετε

λε

Figure 4.6: The maximum absolute error for the 32×32 Hilbert matrix with
different tolerance values

and
max{(λ0 + τ0), τ0, (λ1 + τ1), τ1} = 1.

The information which parameter equals the minimum respectively maximum
can be stored in a more compact way than the values. The minimum re-
spectively maximum value is known so that the remaining parameters can be
calculated.

62

5 Experimental Results

This chapter compares the different introduced OBDD variants in relation to
size and run-time. The comparison is splitted into algebraic computation and
matrix representation.

5.1. Algebraic Computation

The results of the benchmark functions for algebraic computations build the
basis for the comparison. ADDs and NADDs represent the function itself
whereas SOBDDs store the binary encoding of that function. But both, ADDs
and NADDs, could also represent the function by its binary encoding. Thus,
there are two comparisons. One between ADDs and NADDs and one between
the direct function representation and the binary encoding representation of a
function.

|fx|k
SOBDD ADD NADD

0 2 3 2
1 3 7 3
2 4 15 4
3 5 31 5
4 6 63 6
5 7 127 7
6 8 255 8
7 9 511 9
8 10 1023 10
9 11 2047 11

10 12 4095 12

Table 5.1: fx represented by all introduced OBDD variants

Table 5.1 shows the sizes of all introduced OBDD variants that represent the
function fx. fx has k +1 essential variables and thus, the SOBDD and NADD

63

5.1. Algebraic Computation Chapter 5. Experimental Results

|fx + fy|k
SOBDD ADD NADD

0 4 6 3
1 9 18 5
2 14 44 7
3 19 98 9
4 24 208 11
5 29 430 13
6 34 876 15
7 39 1770 17
8 44 3560 19
9 49 7142 21

10 54 14308 23

Table 5.2: fx + fy represented by all OBDD variants

representations are optimal. As ADDs have to store the different values in dif-
ferent nodes it cannot be expected that there is a compact ADD representation
for any algebraic computation benchmark function.

But not only the size of the OBDD variants is important for a practical ap-
plication. The time to build a function is also a measure for the quality of a
data structure.

The SOBDD representation for fx can be constructed in Θ(k), while ADDs
and NADDs have to calculate the function. But the times to construct these
functions are too small1 to compare them.

Now we turn to the addition (fx +fy) represented by the OBDD variants. The
size of these OBDD representations are shown in Table 5.2.

The SOBDD and NADD size is linear in the number of variables. The NADD
representation is optimal because 2(k+1)+1 nodes are needed to represent the
2(k + 1) essential variables. As mentioned before it was expected that ADDs
are not capable to represent the function fx + fy.

The times to build fx + fy can be seen in Table 5.3. The construction with
ADDs is much slower than with the other variants which is due to the number of
nodes. NADDs calculate much more than SOBDDs and ADDs while traversing
a graph but the additional effort is compensated by the additional terminal
cases.

The last remaining algebraic benchmark function emphasizes the differences
between the introduced OBDD variants most plainly. Table 5.4 shows the

1∼ 10 milliseconds

64

Chapter 5. Experimental Results 5.1. Algebraic Computation

fx + fyk
SOBDD ADD NADD

4 0.04 0.03 0.03
5 0.05 0.05 0.03
6 0.07 0.13 0.03
7 0.08 0.42 0.03
8 0.11 1.66 0.03
9 0.13 6.47 0.04

10 0.17 29.22 0.04

Table 5.3: Times to build fx + fy measured in seconds

|fx · fy|k
SOBDD ADD NADD

0 3 6 3
1 12 24 6
2 45 93 11
3 153 352 20
4 475 1377 37
5 1511 5358 70
6 4674 21078 135
7 14558 83203 264
8 45054 329908 521
9 139404 1308670 1034

10 429911 5199280 2059

Table 5.4: fx · fy represented by OBDD variants

65

5.2. Matrix Representation Chapter 5. Experimental Results

representation of fx · fy with the OBDD variants. ADDs and SOBDDs grow
exponentially in 2k variables. The structure of fy does not change while build-
ing fx · fy with NADDs, so that NADDs grow exponentially in k variables.

fx · fyk
SOBDD ADD NADD

4 < 1 < 1 < 1
5 1 < 1 < 1
6 5 < 1 < 1
7 21 2 < 1
8 87 7 < 1
9 498 33 < 1

10 2202 144 < 1

Table 5.5: Times to build fx · fy measured in seconds

The times to build this function can be seen in Table 5.5. The invariance
of scalar multiplication reduces the construction time for NADDs immensely.
The representation of fx · fy with SOBDDs is much smaller than with ADDs,
but more time is needed to build the SOBDD representation. At first sight
this might be surprising, but with a closer look it can be seen that the i-th
bit needs i − 1 lower bits to be calculated. This explains the smaller size but
much higher computation time.

The mentioned numerical errors for NADDs do not appear for these benchmark
functions. The reason for this is that the functions were build in a way such
that the used calculations do not affect the already calculated sub NADDs.
The represented domain is also responsible for this result.

5.2. Matrix Representation

The matrix representation is the main purpose for ADDs. NADDs were mainly
introduced for algebraic computation. But the ADD size of a function is an
upper bound for NADDs, so that NADDs should also be suitable for matrix
representation.

For matrix representation the variable ordering is interleaved. With this or-
dering the advantages of NADDs2 cannot be used to full capacity. The main
drawback of matrix representation with NADDs is that numerical errors can
influence all values of a matrix.

Table 5.6 shows the sizes for 1lk and Hk represented by ADDs and NADDs.

2terminal cases and compact representation

66

Chapter 5. Experimental Results 5.2. Matrix Representation

|1lk| |Hk|k
ADD NADD ADD NADD

2 5 3 6 3
4 8 6 18 8
8 11 9 44 20

16 14 12 98 46
32 17 15 208 100
64 20 18 430 210

128 23 21 876 432
256 26 24 1770 878
512 29 27 3560 1770

1024 32 30 7142 3556

Table 5.6: Sizes of the benchmark matrices

The identity matrix has a compact OBDD representation. The different ADD
and NADD sizes can be explained by negative edges. As shown in Lemma
4.2.9 and Theorem 4.2.11 only f or 1 − f can be represented by a NADD
node. Thus, the NADD representation of Boolean functions is equivalent to
SOBDDs with negative edges. The structure of the Hilbert matrix Hk is not
well suited for OBDD representation. A matrix with block structure can have
a compact OBDD representation. This can be seen through the cofactors of
a matrix. Equivalent cofactors can be represented by the same OBDD node.
NADDs provide a more compact matrix representation of Hk but the numerical
errors mentioned cannot be ignored3.

The last benchmark matrix is an example for sparse matrices as they often
appear in practice. The ADD representation with 472187 nodes is much worse
than the NADD representation with 90385 nodes. Numerical errors still appear
in this example but are not of great influence.

The time to build a matrix representation with ADDs or NADDs is almost
equal.

3see Figure 4.6

67

5.2. Matrix Representation Chapter 5. Experimental Results

68

6 Conclusion and Perspective

In this thesis a new OBDD variant for discrete function representation was
introduced. The concept of negative edges on SOBDDs has been expanded to
obtain a more compact representation. The main idea was to normalize the
cofactors of the function, so that various represented functions could share the
same subgraphs. With some restrictions NADDs were shown to be canonical.

Some observations from various OBDD variants can still be used while others
do no longer hold. The size of a NADD still depends on the given variable
ordering, but not on the size of the represented domain. The nature of how
the values are spreaded over the domain is relevant for the NADD size. This
could be seen in the case of algebraic computation with defined benchmark
functions.

The great advantage of NADDs shows when they are used for algebraic compu-
tation. For this application they serve much better than SOBDDs and ADDs.
A very useful observation is that an optimal variable ordering for all tested op-
erations can be given. The special properties of NADDs1 reduce the number of
necessary calculations and thus, lower the maximum absolute size of numerical
errors. The computation time to build a NADD representing a given function
is much smaller than for SOBDDs and ADDs. When NADDs are used for
the representation of switching functions they have the same topology than
SOBDDs with negative edges and thus, the same size.

The matrix representation with NADDs has some drawbacks. An entry of
a matrix usually depends on the variables for the rows and the columns, so
that the function that represents the matrix cannot be split into two functions
with disjoint variables. For this reason, the interleaving of the variables has
been emphasized to be a good variable ordering. But with this ordering the
advantages of NADDs cannot be used. Much more calculation has to be done
which increases the maximum absolute size of possible numerical errors and
the runtime to build the matrix representation. The numerical problem with
NADDs should be investigated more deeply to find methods to reduce these
errors. One possible attempt could be the use of a normalization domain
which depends on the given problem. Another idea could be to find variable

1the invariance of scalar multiplication and translation

69

Chapter 6. Conclusion and Perspective

orderings that reduce the number of calculations and thus, the sizes of the
errors. Reordering methods on NADDs have to be defined to obtain this.
With the introduction of these new methods it should be examined for which
further applications NADDs could be used efficiently.

The representation of sparse matrices seems to have a more compact NADD
representation than ADDs. It has been exposed that a compact NADD size
results in manageable numerical errors. Further comparisons of other OBDD
variants, between NADDs and for example EVBDDs and BMDs, should be
performed to get more information about the quality of NADDs.

70

List of Figures

1.1. Binary Decision Tree . 2

2.1. Decision Tree and a corresponding Binary Decision Diagram . . 5

2.2. BDD violating the variable ordering condition 6

2.3. BDD violating the Read Once condition 6

2.4. Reduction rules applied from bottom to top level 9

2.5. Reduction rules applied from top to bottom level 9

2.6. Conjunction of two ROBDD functions creates redundant nodes . 12

2.7. Before and after the application of the negating function 15

2.8. The same function represented by ROBDDs with different vari-
able orderings . 16

2.9. Construction of an OBDD representing a symmetric function . . 18

2.10. Switching the drains influences all functions 20

2.11. Transformation rules for negative edges 22

3.1. ADD function for fx with k = 2 35

3.2. Structure and city plot of ORANI678 37

4.1. Bottom-up definition of a function represented by a (λ, τ)-ADD 41

4.2. The zero drain does not ensure uniqueness 44

4.3. Modifying the parameters without changing the function 46

4.4. Different reduced normalized (λ, τ)-ADDs representing the same
function . 47

4.5. Number of nodes for the 32× 32 Hilbert matrix with different
tolerance values . 61

4.6. The maximum absolute error for the 32×32 Hilbert matrix with
different tolerance values . 62

71

LIST OF FIGURES LIST OF FIGURES

72

List of Tables

1.1. Truth Table . 1

2.1. Complexity of operators on ROBDDs 15

2.2. Complexity for different function classes 17

2.3. Complexity of operators on SOBDDs 21

2.4. Complexity of operators on different OBDD variants 26

2.5. Size of the benchmark functions represented by a SOBDD . . . 29

3.1. Size of the benchmark functions represented by an ADD 34

3.2. Size of the benchmark matrices represented by an ADD 37

4.1. Size of the benchmark functions represented by a NADD 59

4.2. Size of the benchmark matrices represented by a NADD 60

5.1. fx represented by all introduced OBDD variants 63

5.2. fx + fy represented by all OBDD variants 64

5.3. Times to build fx + fy measured in seconds 65

5.4. fx · fy represented by OBDD variants 65

5.5. Times to build fx · fy measured in seconds 66

5.6. Sizes of the benchmark matrices 67

73

LIST OF TABLES LIST OF TABLES

74

Bibliography

[Akers 1978] S. B. Akers, Binary decision diagrams, IEEE Transactions
on Computer Design C-27, pp 509-516, 1978

[Bahar 1993] R. I. Bahar, E. A. Frohm, C. M. Goana, E. Maciii, A.
Pardo, F. Somenzi, Algebraic Decision Diagrams and their

Applications, Proceedings on the International Conference
on Computer Aided Design, 1993

[Baier 2002] C. Baier, Binäre Entscheidungsgraphen, Skript zur Vor-
lesung, University of Bonn, 2002

[Bollig 1996] B. Bollig, I. Wegner, Improving the Variable Ordering of

OBDDs is NP-Complete, IEEE Transactions on Comput-
ers, Volume 45, 1996

[Bryant 1986] R. E. Bryant, Graph-Based Algorithms for Boolean Func-

tion Manipulation, IEEE Transactions on Computers -
Volume C-35, 1986

[Bryant 1991] R. E. Bryant, On the complexity of VLSI implementations

and graph representations of boolean functions with ap-

plications to integer multiplication, IEEE Transactions on
Computers - Volume 40, 1991

[Bryant 1992] R. E. Bryant, Symbolic Boolean Manipulation with Or-

dered Binary Decision Diagrams, ACM Computing Sur-
veys - Volume 24, 1992

[Clarke 1996] E. Clarke, M. Fujita, X. Zhao, Multi-Terminal Binary De-

cision Diagrams and Hybrid Decision Diagrams, Repre-
sentations of Discrete Functions, Kluwer Academic Pub-
lishers, pp 93-108, 1996

[Cook 1971] S. A. Cook, The Complexity of Theorem-Proving Proce-

dures, Proceedings of the Third Annual ACM Symposium
on the Theory of Computing, 1971

[Corman 1990] T. H. Corman, C. E. Leiserson, R. L. Rivest, Introduction

to Algorithms, MIT Press, pp 837, 1990

75

BIBLIOGRAPHY BIBLIOGRAPHY

[Friedman 1990] S. J. Friedman, K. J. Supowit, Finding the Optimal Vari-

able Ordering for Binary Decision Diagrams, IEEE Trans-
actions on Computers, Volume 39, 1990

[JJS-BDD] http://www.jjs-bdd.de

[Lai 1992] Y. T. Lai, S. Sastry, Edge-valued binary decision diagrams

for multi-level hierarchical verification, In Proceedings of
the 29th Conference on Design Automation, pp 608-613,
IEEE Computer Society Press, 1992

[Lee 1959] C. Y. Lee, Representation of switching circuits by binary-

decision programs, Bell System Technical Journal 38, pp
985-999, 1959

[Matrix Market] http://math.nist.gov/MatrixMarket/

[Minato et al 1990] S. Minato, N. Ishiura, S. Yajima, Shared binary decision

diagrams with attributed edges for efficient Boolean func-

tion manipulation, Proceedings of the 27th ACM/IEEE
Design Automation Conference, ACM, New York, pp 52-
57, 1990

[Tafertshofer 1997] P. Tafertshofer, M. Pedram, Factored Edge-Valued Binary

Decision Diagrams, Formal Methods in System Design:
An International Journal, Volume 10, Kluwer Academic
Publishers, pp 243-270, 1997

[Tani 1993] S. Tani, K. Kamaguchi, The Complexity of the Optimal

Variable Ordering Problem of Shared Binary Decision Di-

agrams, Proceedings of the 4th International Symposium
on Algorithms and Computation, 1993

76

Index
(λ, τ)-ADD, 40

function, 41
normalized, 44

0-Scalar, 55, 57
Hk, 36
1lk, 36
fx, 28
fx + fy, 28
fx · fy, 28

ADD, 31
function, 32

assignment, 3
attributed edges, 20, 39, 43

cofactor, 4

elimination rule, 9
Eval(Z), 3
evaluation, 3

find or add, 10, 24, 32, 55
find or add drain, 32

isomorphism rule, 9

K-function, 3

NADD, 44
0-Scalar, 49
λ0-Positivity, 49
λ1-Positivity, 49
τ0-Arrangement, 49
reduced, 47

negative edges, 21
node

non-terminal, 4
successor, 4
terminal node, 6

normalization function, 46

OBDD, 6
(λ, τ)-ADD, 40

ADD, 31
NADD, 44
ROBDD, 8
SOBDD, 19

one drain, 21, 43
ORANI678, 36

Read Once condition, 6
reduced, 8
reduction rules, 8, 24
ROBDD, 8

SAT, 14
scalar factor λ, 39
shannon expansion, 7
SOBDD, 19
switching functions, 4
symmetric, 17

test for equality, 13, 14, 20
translation τ , 39

uniqueness, 8
universal, 5

variable ordering, 4

zero drain, 43

77

INDEX INDEX

78

Declaration

Eidesstattliche Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie
Zitate kenntlich gemacht habe.

Affidavit

I herewith declare, in lieu of oath, that I have prepared this paper on my
own, using only the materials (devices) mentioned. Ideas taken, directly or
indirectly, from other sources, are identified as such.

Bonn, 4th November 2004

Jörn Ossowski

79

